A090354
Self-convolution equals the binomial transform of A090353: A^2 = BINOMIAL(A090353).
Original entry on oeis.org
1, 1, 3, 19, 190, 2574, 43922, 903986, 21784659, 601478195, 18715354049, 647834803569, 24688869993252, 1027073272425876, 46309250293477020, 2249435671825385244, 117101538463333719891, 6503918951175618656403
Offset: 0
-
{a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^3,x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^4+B);B=subst(A,x, x/(1-x))/(1-x)+x*O(x^n); polcoeff(B^(1/2),n,x))}
A090351
G.f. satisfies A^3 = BINOMIAL(A^2).
Original entry on oeis.org
1, 1, 3, 15, 108, 1032, 12388, 179572, 3052986, 59555338, 1310677726, 32114051862, 866766965308, 25547102523604, 816335926158372, 28107705687291892, 1037367351120788551, 40852168787823027351, 1709792654612819858341
Offset: 0
A^3 = BINOMIAL(A090352), since A090352=A^2.
-
m:=40;
f:= func< n,x | Exp((&+[(&+[2^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090351
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
-
nmax = 18; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[2^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
-
{a(n) = my(A); if(n<0,0,A = 1+x +x*O(x^n); for(k=1,n, B = subst(A^2,x,x/(1-x))/(1-x) +x*O(x^n); A = A - A^3 + B); polcoef(A,n,x))}
for(n=0,25,print1(a(n),", "))
-
m=50
def f(n, x): return exp(sum(sum(2^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A090351_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A090351_list(m-9) # G. C. Greubel, Jun 08 2023
A090358
G.f. satisfies A^6 = BINOMIAL(A^5).
Original entry on oeis.org
1, 1, 6, 66, 1071, 23151, 627236, 20452976, 779947641, 34050858041, 1674497370602, 91575747294582, 5512402585832847, 362148111801511407, 25783279860096503952, 1977349647140061768364, 162508269041154881377519
Offset: 0
A^6 = BINOMIAL(A090362), since A090362=A^5. Also,
BINOMIAL(A) = A090359^2 since 2=gcd(1+1,6),
BINOMIAL(A^2) = A090360^3 since 3=gcd(2+1,6) and
BINOMIAL(A^3) = A090361^2 since 2=gcd(3+1,6).
-
m:=40;
f:= func< n,x | Exp((&+[(&+[5^(j-1)*Factorial(j)*StirlingSecond(k,j) *x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090358
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
-
nmax = 16; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^6 - A[x/(1 - x)]^5/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[5^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
-
{a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^5,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^6+B);polcoeff(A,n,x))}
-
m=50
def f(n, x): return exp(sum(sum( 5^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A090358_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A090358_list(m-5) # G. C. Greubel, Jun 08 2023
A090356
G.f. A(x) satisfies A(x)^5 = BINOMIAL(A(x)^4); that is, the binomial transform of the coefficients in A(x)^4 yields the coefficients in A(x)^5.
Original entry on oeis.org
1, 1, 5, 45, 595, 10475, 231255, 6148495, 191276600, 6815243040, 273601200136, 12217471594856, 600580173151560, 32224787998758280, 1873909224391774760, 117388347849375956328, 7880739469498103077588, 564440024187816634143380
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 595*x^4 + 10475*x^5 + 231255*x^6 + ...
The coefficients in A(x)^4 are given by A090357 and begin
A(x)^4: [1, 4, 26, 244, 3131, 52600, 1111940, ..., A090357(n), ...].
The binomial transform of A090357 yields the coefficients of A(x)^5:
A(x)^5: [1, 5, 35, 335, 4280, 70976, 1479800, ...]
as shown by
1 = 1*1,
5 = 1*1 + 1*4,
35 = 1*1 + 2*4 + 1*26,
335 = 1*1 + 3*4 + 3*26 + 1*244,
4280 = 1*1 + 4*4 + 6*26 + 4*244 + 1*3131, ...
-
m:=40;
f:= func< n,x | Exp((&+[(&+[4^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090356
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 09 2023
-
nmax = 17; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^5 - A[x/(1 - x)]^4/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m = 40}, CoefficientList[Series[Exp[Sum[Sum[4^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 09 2023 *)
-
{a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^4,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^5+B);polcoeff(A,n,x))}
-
m=40
def f(n, x): return exp(sum(sum(4^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A090356_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A090356_list(m) # G. C. Greubel, Jun 09 2023
A090355
G.f. satisfies A^4 = BINOMIAL(A)^3.
Original entry on oeis.org
1, 3, 15, 109, 1086, 14178, 232906, 4647006, 109376595, 2967406345, 91130074437, 3123199831983, 118106517900868, 4883161763750820, 219076867059030300, 10597531747143624820, 549768536732090716371, 30443800514118532762329
Offset: 0
-
nmax = 17; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^4 - A[x/(1 - x)]^3/(1 - x)^3 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^4+B^3);polcoeff(A,n,x))}
A258377
O.g.f. satisfies A^2(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) ).
Original entry on oeis.org
1, 3, 13, 79, 649, 6955, 93813, 1539991, 29884881, 669628819, 17005862301, 482399018527, 15108642099673, 517599894435643, 19247498583665029, 771922934908235751, 33206411983713679009, 1525025984109289947171, 74466779211331635306029, 3852255519421356879419631
Offset: 0
Cf.
A019538,
A080253,
A084784,
A084785,
A090351,
A090352,
A090353,
A090355,
A090356,
A090357,
A090358,
A090362,
A145901,
A258378 (N = 2),
A258379 (N = 3),
A258380 (N = 4),
A258381 (N = 5).
-
#A258377
with(combinat):
#recursively define row polynomials R(n,x) of A145901
R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i,x), i = 0..n-1) end if; end proc:
#define a family of sequences depending on an integer parameter k
a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1,k)*a(n-1-i,k), i = 0..n-1) end if; end proc:
# display the case k = 1
seq(a(n,1), n = 0..19);
-
R[n_, x_] := R[n, x] = If[n==0, 1, 1+x*Sum[Binomial[n, i]*2^(n-i)*R[i, x], {i, 0, n-1}]];
a[n_, k_] := a[n, k] = If[n==0, 1, 1/n*Sum[R[i+1, k]*a[n-1-i, k], {i, 0, n-1}]];
a[n_] := a[n, 1];
a /@ Range[0, 19] (* Jean-François Alcover, Oct 02 2019 *)
A381890
Expansion of Product_{k>=1} (1 + k*x)^((1/12) * (3/4)^k).
Original entry on oeis.org
1, 1, -3, 21, -225, 3207, -56821, 1202099, -29558466, 828401462, -26068940938, 910286433318, -34930741605414, 1461245816594058, -66187658069563710, 3227353484661602866, -168557942284281821933, 9388117645333487820387, -555463036269652132509113
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 3^(j-1)*j!*stirling(k, j, 2))*x^k/k)))
A384325
Expansion of Product_{k>=1} 1/(1 - k*x)^((3/4)^k).
Original entry on oeis.org
1, 12, 114, 1084, 11319, 136920, 1981228, 34705656, 731268315, 18203860748, 524073230394, 17111173850652, 623571696107069, 25046605210733184, 1097919954149781264, 52109508350206511840, 2660615337817983390318, 145353541761618312219336
Offset: 0
-
terms = 20; A[] = 1; Do[A[x] = -3*A[x] + 4*A[x/(1-x)]^(3/4) / (1-x)^3 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(exp(4*sum(k=1, N, sum(j=0, k, 3^j*j!*stirling(k, j, 2))*x^k/k)))
Showing 1-8 of 8 results.
Comments