A090352
G.f. satisfies A^3 = BINOMIAL(A)^2, where A = A090351^2.
Original entry on oeis.org
1, 2, 7, 36, 255, 2370, 27713, 393352, 6582068, 126888632, 2767912036, 67362737168, 1808596304964, 53083358012760, 1690443996202428, 58039582729688320, 2136931230333535178, 83981145793974066484
Offset: 0
-
m:=40;
f:= func< n, x | Exp((&+[(&+[2^j*Factorial(j)*StirlingSecond(k, j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090352
Coefficients(R!( f(m, x) )); // G. C. Greubel, Jul 07 2023
-
nmax = 17; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x)^2 + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A,x, x/(1-x))/(1-x)+x*O(x^n); A=A-A^3+B^2); polcoeff(A,n,x))}
-
m=50
def f(n, x): return exp(sum(sum(2^j*factorial(j)*stirling_number2(k, j)*x^k/k for j in range(1, k+1)) for k in range(1, n+2)))
def A090352_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m, x) ).list()
A090352_list(m-9) # G. C. Greubel, Jul 07 2023
Original entry on oeis.org
1, 2, 6, 28, 191, 1758, 20552, 292336, 4902711, 94682414, 2068050286, 50376290220, 1353408261849, 39741665020434, 1266001712189172, 43477659901096872, 1601086339395521724, 62931760277350226040, 2629518833911705359016, 116382349367962203872528, 5439115134893599838307636
Offset: 0
A111343
G.f. A(x/(1-x)), where A = g.f. for A090351.
Original entry on oeis.org
1, 1, 4, 22, 163, 1567, 18794, 271784, 4610375, 89779703, 1973367872, 48308239934, 1303031971629, 38388256758585, 1226260047168738, 42211658188907700, 1557608679494424852, 61330673937954704316, 2566587073634355132976, 113752830534050498513512, 5322732785525637634435108
Offset: 0
A090358
G.f. satisfies A^6 = BINOMIAL(A^5).
Original entry on oeis.org
1, 1, 6, 66, 1071, 23151, 627236, 20452976, 779947641, 34050858041, 1674497370602, 91575747294582, 5512402585832847, 362148111801511407, 25783279860096503952, 1977349647140061768364, 162508269041154881377519
Offset: 0
A^6 = BINOMIAL(A090362), since A090362=A^5. Also,
BINOMIAL(A) = A090359^2 since 2=gcd(1+1,6),
BINOMIAL(A^2) = A090360^3 since 3=gcd(2+1,6) and
BINOMIAL(A^3) = A090361^2 since 2=gcd(3+1,6).
-
m:=40;
f:= func< n,x | Exp((&+[(&+[5^(j-1)*Factorial(j)*StirlingSecond(k,j) *x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090358
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
-
nmax = 16; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^6 - A[x/(1 - x)]^5/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[5^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
-
{a(n)=local(A); if(n<1,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^5,x,x/(1-x))/(1-x)+x*O(x^n); A=A-A^6+B);polcoeff(A,n,x))}
-
m=50
def f(n, x): return exp(sum(sum( 5^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A090358_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A090358_list(m-5) # G. C. Greubel, Jun 08 2023
A090353
G.f. satisfies A^4 = BINOMIAL(A^3).
Original entry on oeis.org
1, 1, 4, 28, 286, 3886, 66260, 1361972, 32784353, 904412593, 28124223808, 973106096392, 37073604836768, 1541948625066176, 69513081435903392, 3376138396206853792, 175739519606046355540, 9760024269508314079444
Offset: 0
A^4 = BINOMIAL(A090355), since A090355=A^3. Also, BINOMIAL(A) = A090354^2.
-
m:=40;
f:= func< n,x | Exp((&+[(&+[3^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090353
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 09 2023
-
nmax = 17; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^4 - A[x/(1 - x)]^3/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[3^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 09 2023 *)
-
{a(n) = my(A); if(n<0,0,A=1+x +x*O(x^n); for(k=1,n, B = subst(A^3,x,x/(1-x))/(1-x)+x*O(x^n); A = A - A^4 + B); polcoef(A,n,x))}
for(n=0,20,print1(a(n),", "))
-
m=50
def f(n, x): return exp(sum(sum(3^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A090353_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A090353_list(m-9) # G. C. Greubel, Jun 09 2023
A258377
O.g.f. satisfies A^2(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) ).
Original entry on oeis.org
1, 3, 13, 79, 649, 6955, 93813, 1539991, 29884881, 669628819, 17005862301, 482399018527, 15108642099673, 517599894435643, 19247498583665029, 771922934908235751, 33206411983713679009, 1525025984109289947171, 74466779211331635306029, 3852255519421356879419631
Offset: 0
Cf.
A019538,
A080253,
A084784,
A084785,
A090351,
A090352,
A090353,
A090355,
A090356,
A090357,
A090358,
A090362,
A145901,
A258378 (N = 2),
A258379 (N = 3),
A258380 (N = 4),
A258381 (N = 5).
-
#A258377
with(combinat):
#recursively define row polynomials R(n,x) of A145901
R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i,x), i = 0..n-1) end if; end proc:
#define a family of sequences depending on an integer parameter k
a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1,k)*a(n-1-i,k), i = 0..n-1) end if; end proc:
# display the case k = 1
seq(a(n,1), n = 0..19);
-
R[n_, x_] := R[n, x] = If[n==0, 1, 1+x*Sum[Binomial[n, i]*2^(n-i)*R[i, x], {i, 0, n-1}]];
a[n_, k_] := a[n, k] = If[n==0, 1, 1/n*Sum[R[i+1, k]*a[n-1-i, k], {i, 0, n-1}]];
a[n_] := a[n, 1];
a /@ Range[0, 19] (* Jean-François Alcover, Oct 02 2019 *)
A384324
Expansion of Product_{k>=1} 1/(1 - k*x)^((2/3)^k).
Original entry on oeis.org
1, 6, 33, 200, 1428, 12408, 132604, 1730160, 27043866, 495026316, 10388326986, 245555445888, 6446710871724, 185904786328920, 5836500883321164, 198054400887909264, 7220679972923312487, 281402128806812402490, 11671796413017231008663
Offset: 0
-
terms = 20; A[] = 1; Do[A[x] = -2*A[x] + 3*A[x/(1-x)]^(2/3) / (1-x)^2 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(exp(3*sum(k=1, N, sum(j=0, k, 2^j*j!*stirling(k, j, 2))*x^k/k)))
A384344
Expansion of Product_{k>=1} (1 + k*x)^((1/6) * (2/3)^k).
Original entry on oeis.org
1, 1, -2, 10, -77, 787, -9972, 150552, -2637729, 52615903, -1177590290, 29228602546, -796945212035, 23681656958269, -761803800466856, 26376749702235900, -978091742247376932, 38674335439691203644, -1624351949069462807480, 72221688529265896447384
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 2^(j-1)*j!*stirling(k, j, 2))*x^k/k)))
A384413
Expansion of Product_{k>=1} 1/(1 - k^3 * x)^((1/6) * (2/3)^k).
Original entry on oeis.org
1, 37, 33987, 169103895, 2499834885228, 81779253109721484, 5002571587280667349252, 513188808423273125116834036, 81795428604490137664191461936826, 19140816569244304756404266108586220066, 6295058477497449841660364475294196843864030, 2810342651288539045376339873565157506716615522598
Offset: 0
-
b(n) = sum(k=0, n, 2^k*k!*stirling(n, k, 2));
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, b(3*k)*x^k/k)/2))
Showing 1-9 of 9 results.
Comments