A084785 Diagonal of the triangle (A084783) and the self-convolution of the first column (A084784).
1, 2, 5, 16, 66, 348, 2298, 18504, 176841, 1958746, 24661493, 347548376, 5415830272, 92410046544, 1712819553864, 34258146124320, 735267392077962, 16852848083339700, 410809882438699346, 10611174406149372736, 289493459925589039804, 8317946739043065421640
Offset: 0
Examples
G.f.: A(x) = (1-x)^(-1/2)*(1-2*x)^(-1/4)*(1-3*x)^(-1/8)*(1-4*x)^(-1/16)*... - _Paul D. Hanna_, Jun 16 2010
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..350
- Chao-Ping Chen, Sharp inequalities and asymptotic series related to Somos' quadratic recurrence constant, Journal of Number Theory, 2016, Volume 172, March 2017, Pages 145-159.
- Olivier Golinelli, Remote control system of a binary tree of switches - II. balancing for a perfect binary tree, arXiv:2405.16968 [cs.DM], 2024. See p. 17.
Programs
-
Magma
m:=40; f:= func< n,x | Exp((&+[(&+[(-2)^j*Factorial(j)*StirlingSecond(k,j)*(-x)^k/k: j in [1..k]]): k in [1..n+2]])) >; R
:=PowerSeriesRing(Rationals(), m+1); // A084785 Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023 -
Mathematica
nmax = 19; sol = {a[0] -> 1}; Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[(1+x)^2 * A[x] - A[x/(1+x)]^2 + O[x]^(n+1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}]; sol /. Rule -> Set; a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *) With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[(-2)^j*j!*StirlingS2[k, j], {j,k}]*(-x)^k /k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
-
PARI
A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n=2, 25, sc = sum(i=2, n-1, A[i, 1]*A[n+1-i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k=2, n, A[n, k] = A[n, k-1] + A[n-1, k-1]; rs += A[n, k]); print(A[n, n])); \\ David Wasserman, Jan 06 2005
-
PARI
{a(n)=local(A); if(n<0, 0, A=1; for(k=1,n, A=truncate(A+O(x^k))+x*O(x^k); A+=A-(subst(1/A,x,x/(1+x))*(1+x))^-2;); polcoeff(A,n))} /* Michael Somos, Feb 18 2006 */
-
SageMath
def f(n, x): return exp(sum(sum( (-2)^j*factorial(j)* stirling_number2(k,j)*(-x)^k/k for j in range(1,k+1)) for k in range(1,n+2))) m=50 def A084785_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(m,x) ).list() A084785_list(m-9) # G. C. Greubel, Jun 08 2023
Formula
G.f. A(x) satisfies (1+x)^2 = A(x/(1+x))^2/A(x). - Michael Somos, Feb 16 2006
G.f.: A(x) = Product_{n>=1} 1/(1 - n*x)^(1/2^n). - Paul D. Hanna, Jun 16 2010
a(n) ~ (n-1)! / (log(2))^(n+1). - Vaclav Kotesovec, Nov 19 2014
From Peter Bala, May 26 2001: (Start)
Extensions
More terms from David Wasserman, Jan 06 2005
Comments