A084844 Denominators of the continued fraction n + 1/(n + 1/...) [n times].
1, 2, 10, 72, 701, 8658, 129949, 2298912, 46866034, 1082120050, 27916772489, 795910114440, 24851643870041, 843458630403298, 30918112619119426, 1217359297034666112, 51240457936070359069, 2296067756927144738850, 109127748348241605689981
Offset: 1
Examples
a(4) = 72 since 4 + 1/(4 + 1/(4 + 1/4)) = 305/72.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..387
- Eric Weisstein's World of Mathematics, Lucas Sequence
Crossrefs
Programs
-
Maple
A084844 :=proc(n) combinat[fibonacci](n, n) end: seq(A084844(n), n=1..30); # Zerinvary Lajos, Jan 03 2007
-
Mathematica
myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Denominator[FromContinuedFraction[myList[n]]], {n, 1, 20}] Table[s=n; Do[s=n+1/s, {n-1}]; Denominator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *) Table[Fibonacci[n, n], {n, 1, 20}] (* Vladimir Reshetnikov, May 07 2016 *) Table[DifferenceRoot[Function[{y,m},{y[2+m]==n*y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
-
Python
from sympy import fibonacci def a(n): return fibonacci(n, n) print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017
Formula
a(n) = (s^n - (-s)^(-n))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016
a(n) = y(n,n), where y(m+2,n) = n*y(m+1,n) + y(m,n), with y(0,n)=0, y(1,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 03 2017
a(n) = A117715(n,n). - Bobby Jacobs, Aug 12 2017
a(n) = [x^n] x/(1 - n*x - x^2). - Ilya Gutkovskiy, Oct 10 2017
a(n) == 0 (mod n) for even n and 1 (mod n) for odd n. - Flávio V. Fernandes, Dec 08 2020
a(n) == 0 (mod n) for even n and 1 (mod n^2) for odd n; see A065599. - Flávio V. Fernandes, Dec 25 2020
a(n) == 0 (mod 2*(n/2)^2) for even n and 1 (mod n^2) for odd n; see A129194. - Flávio V. Fernandes, Feb 06 2021
Comments