A084865 Primes of the form 2x^2 + 3y^2.
2, 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 251, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 683, 701, 773, 797, 821, 827, 941, 947, 971, 1013, 1019, 1061, 1091, 1109, 1163, 1181, 1187
Offset: 1
Examples
A000040(17) = 59 = 32 + 27 = 2*4^2 + 3*3^2, therefore 59 is a term.
References
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[2, 0, 3, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\3), if(isprime(t=w+3*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
The primes are congruent to {2, 3, 5, 11} (mod 24). - T. D. Noe, May 02 2008
Comments