cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084865 Primes of the form 2x^2 + 3y^2.

Original entry on oeis.org

2, 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 251, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 683, 701, 773, 797, 821, 827, 941, 947, 971, 1013, 1019, 1061, 1091, 1109, 1163, 1181, 1187
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Comments

Subsequence of A084864; A084863(a(n))>0.
Conjecture: A084863(a(n))=1?
Is it true that a(n) = A019338(n+1)?
Comment: The truth of the conjecture A084863(a(n))=1 follows from the genus theory of quadratic forms (see Cox, page 61). By comparing enough terms, we see that the conjecture a(n) = A019338(n+1) is false. - T. D. Noe, May 02 2008
Appears to be the primes p such that (p mod 6)*(Fibonacci(p) mod 6)=25. - Gary Detlefs, May 26 2014

Examples

			A000040(17) = 59 = 32 + 27 = 2*4^2 + 3*3^2, therefore 59 is a term.
		

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[2, 0, 3, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\3), if(isprime(t=w+3*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {2, 3, 5, 11} (mod 24). - T. D. Noe, May 02 2008