cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084868 Main diagonal of symmetric square table A084867, in which the antidiagonal sums (A006012) form the first row shifted left.

Original entry on oeis.org

1, 2, 8, 36, 168, 796, 3800, 18216, 87536, 421292, 2029592, 9784088, 47187536, 227651352, 1098523504, 5301727824, 25590307552, 123529362124, 596337248024, 2878947861432, 13899229883024, 67105641925064, 323993230750672
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003, Jun 11 2003

Keywords

Comments

The Hankel transform (see A001906 for definition) of this sequence is A000302 (powers of 4): 1, 4, 16, 64, 256, 1024, ... - Philippe Deléham, Aug 17 2005

Examples

			1 + 2*x + 8*x^2 + 36*x^3 + 168*x^4 + 796*x^5 + 3800*x^6 + 18216*x^7 + ...
		

Crossrefs

Programs

  • Maple
    1/(1-x/(sqrt(1/4-x))): series(%,x,23): seq(coeff(%,x,n),n=0..22); # Peter Luschny, Feb 06 2017
  • Mathematica
    Table[SeriesCoefficient[((1-4*x)+2*x*Sqrt[1-4*x])/(1-4*x-4*x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff((1 - 4*x + 2*x * sqrt(1 - 4*x + x * O(x^n))) /(1 - 4*x - 4*x^2), n))} /* Michael Somos, Jan 05 2012 */

Formula

Differential equation: (16*x^3 + 12*x^2 - 8*x + 1) * x*(d/dx)A(x) + (8x^3 - 12*x^2 + 6*x - 1) * A(x) + (8x^2 - 6*x + 1) = 0.
G.f.: ((1 - 4*x) + 2*x * sqrt(1 - 4*x)) / (1 - 4*x - 4*x^2). a(n) * (n-1) = a(n-1) * (8*n - 14) - a(n-2) * 12*(n-3) - a(n-3) * 8*(2*n - 5), n > 2. Hankel number wall zig-zag diagonal is A011782. - Michael Somos, Sep 14 2003
INVERT transform of A028329 (offset 1). - Michael Somos, Jan 05 2012
G.f.: (1-2*x*f(x))/(1-2*x*f(x)-2*x) where f(x) is the g.f. of A000108 (Catalan numbers). - Philippe Deléham, Jan 30 2012
a(n) ~ (1-1/sqrt(2))*(2+2*sqrt(2))^n. - Vaclav Kotesovec, Oct 14 2012
From Peter Bala, Feb 05 2017: (Start)
G.f: sqrt(1 - 4*x)/(sqrt(1 - 4*x) - 2*x) = 1/(1 - 2*x/(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))) (continued fraction). Cf. A026671, A081696.
Catalan transform of A006012, that is, equals A106566*A006012, as noted by R. J. Mathar. (End)