cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084921 a(n) = lcm(p-1, p+1) where p is the n-th prime.

Original entry on oeis.org

3, 4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

This sequence consists of terms of sequences A055523 and A055527 for prime n > 2. - Toni Lassila (tlassila(AT)cc.hut.fi), Feb 02 2004

Crossrefs

Programs

  • Haskell
    a084921 n = lcm (p - 1) (p + 1)  where p = a000040 n
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [3] cat [(p^2-1)/2: p in PrimesInInterval(3,300)]; // G. C. Greubel, May 03 2024
    
  • Mathematica
    LCM[#-1,#+1]&/@Prime[Range[50]] (* Harvey P. Dale, Oct 09 2018 *)
  • PARI
    a(n)=if(n<2,3,(prime(n)^2-1)/2) \\ Charles R Greathouse IV, May 15 2013
    
  • SageMath
    [3]+[(n^2-1)/2 for n in prime_range(3,301)] # G. C. Greubel, May 03 2024

Formula

a(n) = A084920(n)/2 for n > 1.
a(n) = 3*A084922(n) for n > 2.
a(n) = A009286(A000040(n)). - Enrique Pérez Herrero, May 17 2012
a(n) ~ 0.5 n^2 log^2 n. - Charles R Greathouse IV, May 15 2013
Product_{n>=1} (1 + 1/a(n)) = 2. - Amiram Eldar, Jan 23 2021
a(n) = (A000040(n)^2 - 1) / 2 for n > 1. - Christian Krause, Mar 27 2021
a(n) = (3/2)*A024700(n-2), for n > 1. - G. C. Greubel, May 03 2024