A084921 a(n) = lcm(p-1, p+1) where p is the n-th prime.
3, 4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Christian Krause, LODA program for A084921
- Index entries for sequences related to lcm's
Programs
-
Haskell
a084921 n = lcm (p - 1) (p + 1) where p = a000040 n -- Reinhard Zumkeller, Jun 01 2013
-
Magma
[3] cat [(p^2-1)/2: p in PrimesInInterval(3,300)]; // G. C. Greubel, May 03 2024
-
Mathematica
LCM[#-1,#+1]&/@Prime[Range[50]] (* Harvey P. Dale, Oct 09 2018 *)
-
PARI
a(n)=if(n<2,3,(prime(n)^2-1)/2) \\ Charles R Greathouse IV, May 15 2013
-
SageMath
[3]+[(n^2-1)/2 for n in prime_range(3,301)] # G. C. Greubel, May 03 2024
Formula
a(n) = A084920(n)/2 for n > 1.
a(n) = 3*A084922(n) for n > 2.
a(n) ~ 0.5 n^2 log^2 n. - Charles R Greathouse IV, May 15 2013
Product_{n>=1} (1 + 1/a(n)) = 2. - Amiram Eldar, Jan 23 2021
a(n) = (A000040(n)^2 - 1) / 2 for n > 1. - Christian Krause, Mar 27 2021
a(n) = (3/2)*A024700(n-2), for n > 1. - G. C. Greubel, May 03 2024
Comments