cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A084920 a(n) = (prime(n)-1)*(prime(n)+1).

Original entry on oeis.org

3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013
Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016

Crossrefs

Programs

Formula

a(n) = A006093(n) * A008864(n);
a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.
Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009
a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009
a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017
a(n) = 24 * A024702(n) for n > 2. - Jianing Song, Apr 28 2019
Sum_{n>=1} 1/a(n) = A154945. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = Pi^2/6 (A013661).
Product_{n>=1} (1 - 1/a(n)) = A065469. (End)

A112049 a(n) = position of A112046(n) in A000040.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 3, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 5, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 6, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 3, 1, 1, 2, 2, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Comments

A112051 gives the first positions of distinct new values in this sequence, that seem also to be the positions of the first occurrence of each n, and thus the positions of the records. Compare also to A084921. - Antti Karttunen, May 26 2017

Crossrefs

Cf. A286579 (ordinal transform).

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1},While[JacobiSymbol[i, 2n + 1]==1, i++]; i];a049084[n_]:=If[PrimeQ[n], PrimePi[n], 0]; Table[a049084[a112046[n]], {n, 102}] (* Indranil Ghosh, May 11 2017 *)
  • PARI
    A112049(n) = for(i=1, (2*n), if((kronecker(i, (n+n+1)) < 1), return(primepi(i)))); \\ Antti Karttunen, May 26 2017
    
  • Python
    from sympy import jacobi_symbol as J, isprime, primepi
    def a049084(n):
        return primepi(n) if isprime(n) else 0
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a049084(a112046(n))
    print([a(n) for n in range(1, 103)]) # Indranil Ghosh, May 11 2017

Formula

a(n) = A049084(A112046(n)).

Extensions

Unnecessary fallback-clause removed from the name by Antti Karttunen, May 26 2017

A066885 a(n) = (prime(n)^2 + 1)/2.

Original entry on oeis.org

5, 13, 25, 61, 85, 145, 181, 265, 421, 481, 685, 841, 925, 1105, 1405, 1741, 1861, 2245, 2521, 2665, 3121, 3445, 3961, 4705, 5101, 5305, 5725, 5941, 6385, 8065, 8581, 9385, 9661, 11101, 11401, 12325, 13285, 13945, 14965, 16021, 16381, 18241, 18625
Offset: 2

Views

Author

Enoch Haga, Jan 22 2002

Keywords

Comments

a(n) is the average of the numbers from 1 to prime(n)^2. It's also the average of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).
If a(n) is a square c^2, then prime(n) is an NSW prime (A088165) and a prime RMS number (A140480). - Ctibor O. Zizka, Aug 26 2008
The sequence starts with a(2) = (3^2 + 1)/2 = 5 since a(1) would be (2^2 + 1)/2 = 5/2. - Michael B. Porter, Dec 14 2009

Crossrefs

Cf. A084921.
Partial sums of A124434.

Programs

Formula

a(n) = 1 + A084921(n). - R. J. Mathar, Sep 30 2011
a(n) mod 4 = 1. - Altug Alkan, Apr 08 2016
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jun 03 2022

Extensions

Edited by Dean Hickerson, Jun 08 2002

A117762 a(1) = 6; for n>1, a(n) = prime(n)*(prime(n)^2 - 1)/2.

Original entry on oeis.org

6, 12, 60, 168, 660, 1092, 2448, 3420, 6072, 12180, 14880, 25308, 34440, 39732, 51888, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 285852, 352440, 456288, 515100, 546312, 612468, 647460, 721392, 1024128, 1123980, 1285608, 1342740, 1653900
Offset: 1

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Comments

a(n) is the order of the matrix group PSL(2,prime(n)). - corrected by Tom Edgar, Sep 28 2015

References

  • Blyth and Robertson, Essential Student Algebra, Volume 5: Groups,Chapman and Hall, New York, page 14

Crossrefs

Programs

  • Magma
    [6] cat [NthPrime(n)*(NthPrime(n)^2-1)/2: n in [2..40]]; // Vincenzo Librandi, Sep 29 2015
    
  • Mathematica
    a[n_]= If[n==1, 6, Prime[n]*(Prime[n]^2 -1)/2];
    Table[a[n], {n,40}]
    Join[{6}, Table[Prime[n] (Prime[n]^2 - 1)/2, {n, 2, 40}]] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    a(n) = prime(n)*(prime(n)^2-1)/2;
    vector(40, n, a(n+1)) \\ Altug Alkan, Sep 28 2015
    
  • SageMath
    def A117762(n): return nth_prime(n)*(nth_prime(n)^2-1)/2 + 3*int(n==1)
    [A117762(n) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = A127918(n), n>1.
a(n) = A000040(n)*A084921(n). - R. J. Mathar, Jan 29 2024

A127918 Half of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

3, 12, 60, 168, 660, 1092, 2448, 3420, 6072, 12180, 14880, 25308, 34440, 39732, 51888, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 285852, 352440, 456288, 515100, 546312, 612468, 647460, 721392, 1024128, 1123980, 1285608
Offset: 1

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

Apart from the first term, the same as A117762. - R. J. Mathar, Jun 14 2008
Except the first term, a(n) is the area of the integer-sided isosceles triangle ABC with AB=AC such that the altitude AH is of prime(n) length.
The couples (a(n), altitude) are (12,3), (60,5), (168,7), (660,11), (1092,13), ... and the sequence of the ratio a(n)/prime(n) is {4, 12, 24, 60, 84, 144, 180, ...} - see A084921. - Michel Lagneau, Oct 23 2013
a(n) is also equal to the number of reducible quadratic polynomials in the field of size prime(n). - James East, Apr 26 2024

Crossrefs

Programs

  • Magma
    [(NthPrime(n)+1)*NthPrime(n)*(NthPrime(n)-1)/2: n in [1..40]]; // Vincenzo Librandi, Apr 09 2017
  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/2, {n, 1, 100}]
  • PARI
    forprime(p=2,1e3,print1(3*binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

A084922 a(n) = (prime(n)-1)*(prime(n)+1)/6.

Original entry on oeis.org

4, 8, 20, 28, 48, 60, 88, 140, 160, 228, 280, 308, 368, 468, 580, 620, 748, 840, 888, 1040, 1148, 1320, 1568, 1700, 1768, 1908, 1980, 2128, 2688, 2860, 3128, 3220, 3700, 3800, 4108, 4428, 4648, 4988, 5340, 5460, 6080, 6208, 6468, 6600, 7420
Offset: 3

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Crossrefs

Programs

  • Magma
    [(p^2-1)/6: p in PrimesInInterval(4, 250)]; // Vincenzo Librandi, Apr 11 2013
    
  • Mathematica
    Select[Range[0, 7000], PrimeQ[Sqrt[6 # + 1]]&] (* Vincenzo Librandi, Apr 11 2013 *)
    (Prime[Range[3,60]]^2 -1)/6 (* G. C. Greubel, May 02 2024 *)
  • PARI
    a(n) = (prime(n)^2-1)/6; \\ Michel Marcus, Mar 22 2016
    
  • SageMath
    [(n^2-1)//6 for n in prime_range(4,301)] # G. C. Greubel, May 02 2024

Formula

a(n) = A084920(n)/6.
a(n) = A084921(n)/3.

A216244 a(n) = (prime(n)^2 - 1)/2 for n >= 2.

Original entry on oeis.org

4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380, 18240, 18624, 19404, 19800
Offset: 2

Views

Author

Richard R. Forberg, May 28 2013

Keywords

Comments

Subsequence of A055523 restricted to the case of the other (shorter) leg of the triangle equal to a prime.
There is only one value of a(n) for each prime(n). (This is not necessarily true if the shorter leg is not a prime.)
Note that a(1) is nonexistent since there is no solution with prime = 2.
All terms are divisible by 4.
The values of m (the length of the hypotenuse) always equals a(n) + 1.
a(n) = (prime(n)^2 - 1)/2 for all n > 1.
This follows algebraically given m = a(n) + 1 (or vice versa).
The same two relationships apply when the shorter leg is an odd nonprime, but for only those results corresponding to the longest possible leg of the triangle.

Examples

			24^2 + 7^2 = 625 = 25^2 = (24 +1)^2  and a(4) = (prime(4)^2 -1)/2 = (49 - 1)/2 = 24.
		

Crossrefs

Subset of A055523.
Equals 4*A061066.
Equals A084921 excluding its first term.

Programs

Formula

a(n) = (prime(n)^2 - 1)/2 for n >= 2.
a(n) = 4*A061066(n) = A084920(n)/2.
a(n) = A084921(n) for n > 1.
a(n) = (prime(n)-1)*(prime(n)+1)/2 = lcm(prime(n)+1, prime(n)-1) for n > 1 because one of prime(n)+1 or prime(n)-1 is even and the other is divisible by 4. Say prime(n)-1 is divisible by 4; then (prime(n)+1)/2 and (prime(n)-1)/4 must be coprime. - Frank M Jackson, Dec 11 2018
Product_{n>=2} (1 + 1/a(n)) = 3/2. - Amiram Eldar, Jun 03 2022

Extensions

New name (taken from Formula entry) from Jon E. Schoenfield, Jul 11 2021

A024701 a(n) = (-1 + prime(n+1)^2)/4.

Original entry on oeis.org

2, 6, 12, 30, 42, 72, 90, 132, 210, 240, 342, 420, 462, 552, 702, 870, 930, 1122, 1260, 1332, 1560, 1722, 1980, 2352, 2550, 2652, 2862, 2970, 3192, 4032, 4290, 4692, 4830, 5550, 5700, 6162, 6642, 6972, 7482, 8010, 8190, 9120, 9312, 9702, 9900, 11130, 12432, 12882, 13110
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A084921.

Programs

  • Mathematica
    Table[(Prime[n]^2-1)/4,{n,2,50}] (* Harvey P. Dale, Feb 12 2019 *)

A166010 a(n) = prime(n)^2-4.

Original entry on oeis.org

0, 5, 21, 45, 117, 165, 285, 357, 525, 837, 957, 1365, 1677, 1845, 2205, 2805, 3477, 3717, 4485, 5037, 5325, 6237, 6885, 7917, 9405, 10197, 10605, 11445, 11877, 12765, 16125, 17157, 18765, 19317, 22197, 22797, 24645, 26565, 27885, 29925, 32037
Offset: 1

Views

Author

Keywords

Comments

Least common multiple of prime(n)-2 and prime(n)+2.

Crossrefs

Programs

  • Magma
    [NthPrime(n)^2-4: n in [1..41]]; // Bruno Berselli, Apr 17 2012
    
  • Mathematica
    f[n_]:=LCM[n-2,n+2]; lst={};Do[p=Prime[n];AppendTo[lst,f[p]],{n,5!}]; lst
    Prime[Range[5!]]^2 - 4 (* Zak Seidov, Apr 17 2012 *)
  • PARI
    a(n)=prime(n)^2-4 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = A001248(n)-4 = A040976(n)*A052147(n). [Bruno Berselli, Apr 17 2012]

Extensions

Definition rewritten by Bruno Berselli, Apr 17 2012

A009286 a(n) = lcm(sigma(n), phi(n)).

Original entry on oeis.org

1, 3, 4, 14, 12, 12, 24, 60, 78, 36, 60, 28, 84, 24, 24, 248, 144, 78, 180, 168, 96, 180, 264, 120, 620, 84, 360, 168, 420, 72, 480, 1008, 240, 432, 48, 1092, 684, 180, 168, 720, 840, 96, 924, 420, 312, 792, 1104, 496, 798, 1860, 288, 1176, 1404, 360, 360, 120, 720, 1260
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Antti Karttunen, May 26 2017: (Start)
a(n) = A062354(n) / A009223(n).
a(A000040(n)) = A084921(n). - after Enrique Pérez Herrero's May 17 2012 comment in the latter sequence.
(End)
Showing 1-10 of 16 results. Next