cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084920 a(n) = (prime(n)-1)*(prime(n)+1).

Original entry on oeis.org

3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013
Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016

Crossrefs

Programs

Formula

a(n) = A006093(n) * A008864(n);
a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.
Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009
a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009
a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017
a(n) = 24 * A024702(n) for n > 2. - Jianing Song, Apr 28 2019
Sum_{n>=1} 1/a(n) = A154945. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = Pi^2/6 (A013661).
Product_{n>=1} (1 - 1/a(n)) = A065469. (End)

A084921 a(n) = lcm(p-1, p+1) where p is the n-th prime.

Original entry on oeis.org

3, 4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

This sequence consists of terms of sequences A055523 and A055527 for prime n > 2. - Toni Lassila (tlassila(AT)cc.hut.fi), Feb 02 2004

Crossrefs

Programs

  • Haskell
    a084921 n = lcm (p - 1) (p + 1)  where p = a000040 n
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [3] cat [(p^2-1)/2: p in PrimesInInterval(3,300)]; // G. C. Greubel, May 03 2024
    
  • Mathematica
    LCM[#-1,#+1]&/@Prime[Range[50]] (* Harvey P. Dale, Oct 09 2018 *)
  • PARI
    a(n)=if(n<2,3,(prime(n)^2-1)/2) \\ Charles R Greathouse IV, May 15 2013
    
  • SageMath
    [3]+[(n^2-1)/2 for n in prime_range(3,301)] # G. C. Greubel, May 03 2024

Formula

a(n) = A084920(n)/2 for n > 1.
a(n) = 3*A084922(n) for n > 2.
a(n) = A009286(A000040(n)). - Enrique Pérez Herrero, May 17 2012
a(n) ~ 0.5 n^2 log^2 n. - Charles R Greathouse IV, May 15 2013
Product_{n>=1} (1 + 1/a(n)) = 2. - Amiram Eldar, Jan 23 2021
a(n) = (A000040(n)^2 - 1) / 2 for n > 1. - Christian Krause, Mar 27 2021
a(n) = (3/2)*A024700(n-2), for n > 1. - G. C. Greubel, May 03 2024

A024700 a(n) = (prime(n+2)^2 - 1)/3.

Original entry on oeis.org

8, 16, 40, 56, 96, 120, 176, 280, 320, 456, 560, 616, 736, 936, 1160, 1240, 1496, 1680, 1776, 2080, 2296, 2640, 3136, 3400, 3536, 3816, 3960, 4256, 5376, 5720, 6256, 6440, 7400, 7600, 8216, 8856, 9296, 9976, 10680, 10920, 12160, 12416, 12936, 13200, 14840, 16576, 17176
Offset: 1

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

Numbers of the form 4*h*(3*h +- 1). - Vincenzo Librandi, May 21 2013
This sequence is also: Numbers n such that k is prime and its square is of the form 3*n + 1 (i.e., k^2 = 3*n + 1). For this case, the sequence is to be prepended with a(0) = 1. - G. C. Greubel, Sep 18 2016

Crossrefs

Programs

  • Magma
    [(NthPrime(n+2)^2-1)/3: n in [1..50]]; // Bruno Berselli, May 22 2013
    
  • Mathematica
    Select[Range[2,10000], PrimeQ[Sqrt[3*#+1]] &] (* G. C. Greubel, Sep 18 2016 *)
    (Prime[Range[3,50]]^2-1)/3 (* Harvey P. Dale, May 05 2022 *)
  • PARI
    a(n) = (prime(n+2)^2-1)/3; \\ Altug Alkan, Sep 18 2016
    
  • SageMath
    [(n^2 -1)/3 for n in prime_range(4,301)] # G. C. Greubel, May 02 2024

Formula

a(n) = (A001248(n+2) - 1)/3. - Elmo R. Oliveira, Jan 20 2023
a(n) = 8*A024702(n+2) = 4*A081115(n+2) = 2*A084922(n+2) = (2/3)*A084921(n) = (4/3)*A024701(n+1) = (8/3)*A061066(n+2). - Alois P. Heinz, Jan 20 2023

A339917 Primes p such that p+k and p^2+k are prime, where k = (p^2-1)/6.

Original entry on oeis.org

13, 19, 71, 89, 103, 139, 233, 269, 409, 733, 1009, 1201, 1453, 1579, 1601, 1723, 2053, 2143, 2251, 2699, 2753, 3181, 3259, 3271, 3361, 3491, 3739, 3923, 4051, 4159, 4231, 4283, 4483, 4639, 4733, 5059, 5413, 5431, 5449, 6481, 6911, 7069, 7109, 7253, 7523, 7541, 7703, 7723, 7789, 7901, 8209, 9433
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 22 2020

Keywords

Examples

			a(3) = 71 is a term because with k = (71^2-1)/6 = 840, 71, 71+840 = 911 and 71^2+840 = 5881 are all primes.
		

Crossrefs

Programs

  • Maple
    select(p -> isprime(p) and isprime((7*p^2-1)/6) and isprime((p^2+6*p-1)/6), [seq(seq(6*i+j,j=[1,5]),i=0..10000)]);
  • PARI
    isok(p) = isprime(p) && iferr(isprime(p+(p^2-1)/6) && isprime(p^2+(p^2-1)/6), E,0); \\ Michel Marcus, Dec 23 2020

A106630 Numbers k such that (prime(k)^2 - 1)/6 - prime(k) is prime.

Original entry on oeis.org

7, 8, 12, 13, 17, 20, 24, 25, 28, 29, 32, 39, 42, 45, 52, 53, 58, 59, 63, 64, 67, 72, 75, 79, 83, 87, 88, 93, 100, 102, 114, 115, 125, 126, 127, 131, 139, 140, 144, 154, 159, 160, 173, 180, 190, 195, 219, 223, 232, 234, 240, 248, 253, 265, 278, 279, 284, 296, 299
Offset: 1

Views

Author

Pierre CAMI, May 11 2005

Keywords

Examples

			(17^2 -1)/6 - 17 = 48 - 17 = 31 is prime, 17=prime(7), so 7 is a term.
		

Crossrefs

Cf. A084922.

Programs

  • Mathematica
    Select[Range[350], PrimeQ[(Prime[#]^2 -6*Prime[#] -1)/6] &] (* G. C. Greubel, Sep 08 2021 *)
  • PARI
    is(n,p=prime(n))=isprime((p^2-1)/6-p) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(12) corrected by R. J. Mathar, Nov 13 2009
Showing 1-5 of 5 results.