A127917
Product of three numbers: n-th prime, previous number, and following number.
Original entry on oeis.org
6, 24, 120, 336, 1320, 2184, 4896, 6840, 12144, 24360, 29760, 50616, 68880, 79464, 103776, 148824, 205320, 226920, 300696, 357840, 388944, 492960, 571704, 704880, 912576, 1030200, 1092624, 1224936, 1294920, 1442784, 2048256, 2247960, 2571216, 2685480, 3307800
Offset: 1
-
[6] cat [NthPrime(n)*(NthPrime(n)^2-1): n in [2..40]]; // Vincenzo Librandi, Sep 29 2015
-
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1), {n, 1, 100}]
Table[p(p^2-1),{p,Prime[Range[40]]}] (* Harvey P. Dale, Apr 26 2025 *)
-
forprime(p=2,1e3,print1(6*binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
-
a(n) = prime(n)*(prime(n)^2-1);
vector(40, n, a(n)) \\ Altug Alkan, Sep 28 2015
A127918
Half of product of three numbers: n-th prime, previous and following number.
Original entry on oeis.org
3, 12, 60, 168, 660, 1092, 2448, 3420, 6072, 12180, 14880, 25308, 34440, 39732, 51888, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 285852, 352440, 456288, 515100, 546312, 612468, 647460, 721392, 1024128, 1123980, 1285608
Offset: 1
-
[(NthPrime(n)+1)*NthPrime(n)*(NthPrime(n)-1)/2: n in [1..40]]; // Vincenzo Librandi, Apr 09 2017
-
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/2, {n, 1, 100}]
-
forprime(p=2,1e3,print1(3*binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
A335000
Orders of the groups PSL(m,q) in increasing order as q runs through the prime powers (with repetitions).
Original entry on oeis.org
6, 12, 60, 60, 168, 168, 360, 504, 660, 1092, 2448, 3420, 4080, 5616, 6072, 7800, 9828, 12180, 14880, 20160, 20160, 25308, 32736, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 262080, 265680, 285852, 352440, 372000, 456288, 515100, 546312
Offset: 1
a(5) = #PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168, and,
a(6) = #PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168.
Cf.
A334884 (another case with repetitions),
A334994 (without repetitions).
A352806
Orders of the finite groups PSL_2(K) when K is a finite field with q = A246655(n) elements.
Original entry on oeis.org
6, 12, 60, 60, 168, 504, 360, 660, 1092, 4080, 2448, 3420, 6072, 7800, 9828, 12180, 14880, 32736, 25308, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 262080, 150348, 178920, 194472, 246480, 265680, 285852, 352440, 456288, 515100, 546312, 612468, 647460
Offset: 1
a(6) = 504 since A246655(6) = 8, so a(6) = 8*(8^2-1)/gcd(2,8-1) = 504.
a(7) = 360 since A246655(7) = 9, so a(7) = 9*(9^2-1)/gcd(2,9-1) = 360.
PSL(2,q): this sequence;
PGammaL(2,q) = Aut(SL(2,q)) = Aut(PGL(2,q)) = Aut(PSL(2,q)):
A352807.
A334884
Order of the non-isomorphic groups PSL(m,q) [or PSL_m(q)] in increasing order as q runs through the prime powers.
Original entry on oeis.org
6, 12, 60, 168, 360, 504, 660, 1092, 2448, 3420, 4080, 5616, 6072, 7800, 9828, 12180, 14880, 20160, 20160, 25308, 32736, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 262080, 265680, 285852, 352440, 372000, 456288
Offset: 1
a(1) = #PSL(2,2) = (2^2-1)*2 = 6 and the 6 elements of PSL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 matrices with entries in F_2:
(1 0) (1 1) (1 0) (0 1) (0 1) (1 1)
(0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0).
a(4) = #PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168, and also,
a(4) = #PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168.
Subsequence:
A117762 (PSL(2,prime(n))).
A334994
Orders of the groups PSL(m,q) in increasing order as q runs through the prime powers (without repetitions).
Original entry on oeis.org
6, 12, 60, 168, 360, 504, 660, 1092, 2448, 3420, 4080, 5616, 6072, 7800, 9828, 12180, 14880, 20160, 25308, 32736, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 262080, 265680, 285852, 352440, 372000, 456288, 515100, 546312
Offset: 1
#PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168 = a(4), and,
#PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168 = a(4).
A270775
a(n) is the number of invertible 2 X 2 upper triangular matrices over Z_p where p = prime(n).
Original entry on oeis.org
2, 12, 80, 252, 1100, 1872, 4352, 6156, 11132, 22736, 27900, 47952, 65600, 75852, 99452, 143312, 198476, 219600, 291852, 347900, 378432, 480636, 558092, 689216, 893952, 1010000, 1071612, 1202252, 1271376, 1417472, 2016252, 2213900, 2533952, 2647116, 3263696
Offset: 1
Over Z_2, there are only two invertible upper triangular 2 X 2 matrices: [[1,0],[0,1]] and [[1,1],[0,1]] so a(1) = 2.
A262354
a(n) is the number of 2 X 2 matrices over Z_p with determinant in {1,-1} where p = prime(n).
Original entry on oeis.org
6, 48, 240, 672, 2640, 4368, 9792, 13680, 24288, 48720, 59520, 101232, 137760, 158928, 207552, 297648, 410640, 453840, 601392, 715680, 777888, 985920, 1143408, 1409760, 1825152, 2060400, 2185248, 2449872, 2589840, 2885568, 4096512, 4495920, 5142432, 5370960
Offset: 1
-
Prepend[2 Table[(Prime@ n + 1) Prime@ n (Prime@ n - 1), {n, 2, 34}], 6] (* Michael De Vlieger, Mar 24 2016, after Artur Jasinski at A127917 *)
-
lista(nn) = {print1(6, ", "); forprime(p=3, nn, print1(2*p*(p^2-1), ", ")); } \\ Altug Alkan, Mar 24 2016
-
[6] + [2*p*(p^2-1) for p in prime_range(3,150)]
Showing 1-8 of 8 results.
Comments