cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A127918 Half of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

3, 12, 60, 168, 660, 1092, 2448, 3420, 6072, 12180, 14880, 25308, 34440, 39732, 51888, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 285852, 352440, 456288, 515100, 546312, 612468, 647460, 721392, 1024128, 1123980, 1285608
Offset: 1

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

Apart from the first term, the same as A117762. - R. J. Mathar, Jun 14 2008
Except the first term, a(n) is the area of the integer-sided isosceles triangle ABC with AB=AC such that the altitude AH is of prime(n) length.
The couples (a(n), altitude) are (12,3), (60,5), (168,7), (660,11), (1092,13), ... and the sequence of the ratio a(n)/prime(n) is {4, 12, 24, 60, 84, 144, 180, ...} - see A084921. - Michel Lagneau, Oct 23 2013
a(n) is also equal to the number of reducible quadratic polynomials in the field of size prime(n). - James East, Apr 26 2024

Crossrefs

Programs

  • Magma
    [(NthPrime(n)+1)*NthPrime(n)*(NthPrime(n)-1)/2: n in [1..40]]; // Vincenzo Librandi, Apr 09 2017
  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/2, {n, 1, 100}]
  • PARI
    forprime(p=2,1e3,print1(3*binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

A127919 1/3 of product of three numbers: the n-th prime, the previous number and the following number.

Original entry on oeis.org

2, 8, 40, 112, 440, 728, 1632, 2280, 4048, 8120, 9920, 16872, 22960, 26488, 34592, 49608, 68440, 75640, 100232, 119280, 129648, 164320, 190568, 234960, 304192, 343400, 364208, 408312, 431640, 480928, 682752, 749320, 857072, 895160, 1102600
Offset: 1

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

Number of irreducible monic cubic polynomials over GF(prime(n)). - Robert Israel, Jan 06 2015

Crossrefs

Programs

  • Magma
    [(p^3 - p) div 3: p in PrimesUpTo(150)]; // Vincenzo Librandi, Jan 08 2015
  • Maple
    seq((ithprime(n)^3 - ithprime(n))/3, n=1..100); # Robert Israel, Jan 06 2015
  • Mathematica
    Table[(Prime[n] + 1) Prime[n] (Prime[n] - 1)/3, {n, 100}]
  • PARI
    forprime(p=2,1e3,print1(2*binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = (prime(n)^3 - prime(n))/3. - Wesley Ivan Hurt, Oct 15 2023

A127920 1/6 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

1, 4, 20, 56, 220, 364, 816, 1140, 2024, 4060, 4960, 8436, 11480, 13244, 17296, 24804, 34220, 37820, 50116, 59640, 64824, 82160, 95284, 117480, 152096, 171700, 182104, 204156, 215820, 240464, 341376, 374660, 428536, 447580, 551300, 573800, 644956
Offset: 1

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Crossrefs

Programs

  • Magma
    [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/6: n in [1..40]]; // Vincenzo Librandi, Apr 09 2017
  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/6, {n, 1, 100}]
    ((#-1)#(#+1))/6&/@Prime[Range[40]] (* Harvey P. Dale, Dec 23 2019 *)
  • PARI
    forprime(p=2,1e3,print1(binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from sympy import prime
    print([(prime(n) - 1)*prime(n)*(prime(n) + 1)//6 for n in range(1, 101)]) # Indranil Ghosh, Apr 09 2017
    

Formula

a(n) = A127918(n)/3. - Michel Marcus, Apr 09 2017

A127922 1/24 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

1, 5, 14, 55, 91, 204, 285, 506, 1015, 1240, 2109, 2870, 3311, 4324, 6201, 8555, 9455, 12529, 14910, 16206, 20540, 23821, 29370, 38024, 42925, 45526, 51039, 53955, 60116, 85344, 93665, 107134, 111895, 137825, 143450, 161239, 180441, 194054
Offset: 2

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

The product of (n-1), n, and (n+1) = n^3 - n. - Harvey P. Dale, Jan 17 2011
For n > 2, a(n) = A001318(n-2) * A007310(n-1), if A007310(n-1) is prime. Also a(n) is a subsequence of A000330. - Richard R. Forberg, Dec 25 2013
If p is an odd prime it can always be the side length of a leg of a primitive Pythagorean triangle. However it constrains the other leg to have a side length of (p^2-1)/2 and the hypotenuse to have a side length of (p^2+1)/2. The resulting triangle has an area equal to (p-1)*p*(p+1)/4. a(n) is 1/6 the area of such triangles. - Frank M Jackson, Dec 06 2017

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/24, {n, 1, 100}] (#^3-#)/ 24&/@ Prime[Range[2,40]] (* Harvey P. Dale, Jan 17 2011 *)
    ((#-1)#(#+1))/24&/@Prime[Range[2,40]] (* Harvey P. Dale, Jan 20 2023 *)
  • PARI
    for(n=2,25, print1((prime(n)+1)*prime(n)*(prime(n)-1)/24, ", ")) \\ G. C. Greubel, Jun 19 2017

Formula

a(n) = A011842(A000040(n) + 1) = A000330((A000040(n) - 1) / 2).

A069487 Areas of Pythagorean triangles (A069482, A069484, A069486).

Original entry on oeis.org

30, 240, 840, 5544, 6864, 26520, 23256, 73416, 208104, 107880, 467976, 473304, 296184, 727560, 1494600, 2101344, 863760, 3138816, 2625864, 1492704, 5259504, 4248936, 7623384, 12845904, 7759224, 4244424
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 29 2002

Keywords

Examples

			prime(2)^3 * prime(1) - prime(1)^3 * prime(2) = 3^3 * 2 - 2^3 * 3 = 54 - 24 = 30 that is the area of the Pythagorean triangle (5, 12, 13), so a(1) = 30. - _Bernard Schott_, Sep 23 2019
		

Crossrefs

Programs

  • Magma
    [NthPrime(n+1)^3*NthPrime(n)-NthPrime(n+1)*(NthPrime(n)^3):n in [1..26]]; // Marius A. Burtea, Sep 19 2019

Formula

a(n) = A030078(n+1)*A000040(n) - A000040(n+1)*A030078(n).
a(n) = A000040(n+1)^3*A000040(n) - A000040(n+1)*A000040(n)^3.
a(n) = A000040(n)*A127917(n+1) - A127917(n)*A000040(n+1). - César Aguilera, Sep 18 2019

A138416 a(n) = (p^3 - p^2)/2, where p = prime(n).

Original entry on oeis.org

2, 9, 50, 147, 605, 1014, 2312, 3249, 5819, 11774, 14415, 24642, 33620, 38829, 50807, 73034, 100949, 111630, 148137, 176435, 191844, 243399, 282449, 348524, 451632, 510050, 541059, 606797, 641574, 715064, 1016127, 1115465, 1276292, 1333149
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Comments

Differences (p^k - p^m)/q with k > m:
expression OEIS sequence
-------------- -------------
p^2 - p A036689
(p^2 - p)/2 A008837
p^3 - p A127917
(p^3 - p)/2 A127918
(p^3 - p)/3 A127919
(p^3 - p)/6 A127920
p^3 - p^2 A135177
(p^3 - p^2)/2 this sequence
p^4 - p A138401
(p^4 - p)/2 A138417
p^4 - p^2 A138402
(p^4 - p^2)/2 A138418
(p^4 - p^2)/3 A138419
(p^4 - p^2)/4 A138420
(p^4 - p^2)/6 A138421
(p^4 - p^2)/12 A138422
p^4 - p^3 A138403
(p^4 - p^3)/2 A138423
p^5 - p A138404
(p^5 - p)/2 A138424
(p^5 - p)/3 A138425
(p^5 - p)/5 A138426
(p^5 - p)/6 A138427
(p^5 - p)/10 A138428
(p^5 - p)/15 A138429
(p^5 - p)/30 A138430
p^5 - p^2 A138405
(p^5 - p^2)/2 A138431
p^5 - p^3 A138406
(p^5 - p^3)/2 A138432
(p^5 - p^3)/3 A138433
(p^5 - p^3)/4 A138434
(p^5 - p^3)/6 A138435
(p^5 - p^3)/8 A138436
(p^5 - p^3)/12 A138437
(p^5 - p^3)/24 A138438
p^5 - p^4 A138407
(p^5 - p^4)/2 A138439
p^6 - p A138408
(p^6 - p)/2 A138440
p^6 - p^2 A138409
(p^6 - p^2)/2 A138441
(p^6 - p^2)/3 A138442
(p^6 - p^2)/4 A138443
(p^6 - p^2)/5 A138444
(p^6 - p^2)/6 A138445
(p^6 - p^2)/10 A138446
(p^6 - p^2)/12 A138447
(p^6 - p^2)/15 A138448
(p^6 - p^2)/20 A122220
(p^6 - p^2)/30 A138450
(p^6 - p^2)/60 A138451
p^6 - p^3 A138410
(p^6 - p^3)/2 A138452
p^6 - p^4 A138411
(p^6 - p^4)/2 A138453
(p^6 - p^4)/3 A138454
(p^6 - p^4)/4 A138455
(p^6 - p^4)/6 A138456
(p^6 - p^4)/8 A138457
(p^6 - p^4)/12 A138458
(p^6 - p^4)/24 A138459
p^6 - p^5 A138412
(p^6 - p^5)/2 A138460
.
We can prove that for n>1, a(n) is the remainder of the Euclidean division of Sum_{k=0..p-1} k^p by p^3 where p = prime(n). - Pierre Vandaële, Nov 30 2024

Programs

  • Magma
    [(p^3-p^2)/2: p in PrimesUpTo(1000)]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
    (#^3-#^2)/2&/@Prime[Range[50]] (* Harvey P. Dale, Nov 01 2020 *)
  • PARI
    forprime(p=2,1e3,print1((p^3-p^2)/2", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Extensions

Definition corrected by T. D. Noe, Aug 25 2008

A369632 Decimal expansion of Sum_{primes p} 1/(p*(p^2 - 1)).

Original entry on oeis.org

2, 2, 1, 4, 6, 3, 3, 7, 1, 3, 9, 2, 7, 9, 5, 9, 4, 3, 4, 2, 4, 6, 3, 6, 4, 3, 5, 8, 8, 4, 5, 9, 8, 8, 1, 7, 4, 8, 7, 2, 4, 0, 9, 5, 8, 3, 0, 4, 5, 5, 7, 7, 9, 6, 0, 8, 0, 3, 8, 8, 7, 3, 3, 2, 9, 7, 1, 4, 3, 4, 3, 0, 8, 4, 8, 1, 6, 2, 7, 2, 6, 7, 5, 6, 0, 4, 7, 7, 7, 5, 6, 5, 5, 0, 4, 2, 8, 5, 7, 6, 0, 3, 8, 7, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 28 2024

Keywords

Examples

			0.22146337139279594342463643588459881748724095830455...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[PrimeZetaP[2*k + 1], {k, 1, Infinity}, WorkingPrecision -> 100]][[1]] (* Amiram Eldar, Jan 28 2024 *)
  • PARI
    sumeulerrat(1/(p*(p^2-1))) \\ Amiram Eldar, Jan 28 2024

Formula

Equals Sum_{i>=1} 1/A127917(i) = (A136141 - A179119)/2.
Equals Sum_{k>=1} P(2*k+1), where P(s) is the prime zeta function. - Amiram Eldar, Jan 28 2024

Extensions

More terms from Amiram Eldar, Jan 28 2024

A127921 1/12 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

2, 10, 28, 110, 182, 408, 570, 1012, 2030, 2480, 4218, 5740, 6622, 8648, 12402, 17110, 18910, 25058, 29820, 32412, 41080, 47642, 58740, 76048, 85850, 91052, 102078, 107910, 120232, 170688, 187330, 214268, 223790, 275650, 286900, 322478, 360882, 388108, 431462
Offset: 2

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

Summation of products of partitions into two parts of prime(n): a(6) = (1*12) + (2*11) + (3*10) + (4*9) + (5*8) + (6*7) = 182. - César Aguilera, Feb 20 2018

Crossrefs

Programs

  • Magma
    [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/12: n in [2..50]]; // G. C. Greubel, Apr 30 2018
  • Maple
    a:= n-> (p->p*(p^2-1)/12)(ithprime(n)):
    seq(a(n), n=2..40);  # Alois P. Heinz, Mar 08 2022
  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/12, {n, 2, 100}]
    ((#-1)#(#+1))/12&/@Prime[Range[2,40]] (* Harvey P. Dale, Mar 08 2022 *)
  • PARI
    a(n,p=prime(n))=binomial(p+1,3)/2 \\ Charles R Greathouse IV, Feb 28 2018
    

Formula

a(n) ~ (n log n)^3/12. - Charles R Greathouse IV, Feb 28 2018

A244509 Order of GL_2(p), the general linear group over F_p, where p runs through the primes.

Original entry on oeis.org

6, 48, 480, 2016, 13200, 26208, 78336, 123120, 267168, 682080, 892800, 1822176, 2755200, 3337488, 4773696, 7738848, 11908560, 13615200, 19845936, 25048800, 28003968, 38450880, 46879728, 62029440, 87607296, 103020000, 111447648, 129843216, 139851360
Offset: 1

Views

Author

John McGee, Nov 15 2014

Keywords

Examples

			For n=3 (p=5) we have a(3) = 4*5*(25-1) = 480.
		

Crossrefs

Cf. A127917 (order of SL_2(p)), A047927.

Programs

  • Magma
    [(NthPrime(n)-1)*NthPrime(n)*(NthPrime(n)^2-1): n in [1..100]]; // Vincenzo Librandi, Aug 15 2018
  • Mathematica
    gl2psz[p_] := (p - 1) p (p^2 - 1); sqg = gl2psz/@Prime@Range[m]
    Table[(Prime[n] - 1) Prime[n] (Prime[n]^2 - 1), {n, 30}] (* Vincenzo Librandi, Aug 15 2018 *)
  • PARI
    a(n) = { my(p=prime(n)); (p-1)*p*(p^2-1) } \\ Joerg Arndt, Nov 23 2014
    

Formula

a(n) = (p-1)*p*(p^2-1) where p = prime(n).
a(n) = A127917(n)*(prime(n)-1).
Subsequence of A047927. - Michel Marcus, Nov 25 2014
Sum 1/a(n) = A382584. - R. J. Mathar, Mar 31 2025

A138459 a(n) = ((n-th prime)^6-(n-th prime)^4)/12.

Original entry on oeis.org

4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
Offset: 1

Views

Author

Artur Jasinski, Mar 22 2008

Keywords

Comments

Differences (p^k-p^m)/q such that k > m:
p^2-p is given in A036689
(p^2-p)/2 is given in A008837
p^3-p is given in A127917
(p^3-p)/2 is given in A127918
(p^3-p)/3 is given in A127919
(p^3-p)/6 is given in A127920
p^3-p^2 is given in A135177
(p^3-p^2)/2 is given in A138416
p^4-p is given in A138401
(p^4-p)/2 is given in A138417
p^4-p^2 is given in A138402
(p^4-p^2)/2 is given in A138418
(p^4-p^2)/3 is given in A138419
(p^4-p^2)/4 is given in A138420
(p^4-p^2)/6 is given in A138421
(p^4-p^2)/12 is given in A138422
p^4-p^3 is given in A138403
(p^4-p^3)/2 is given in A138423
p^5-p is given in A138404
(p^5-p)/2 is given in A138424
(p^5-p)/3 is given in A138425
(p^5-p)/5 is given in A138426
(p^5-p)/6 is given in A138427
(p^5-p)/10 is given in A138428
(p^5-p)/15 is given in A138429
(p^5-p)/30 is given in A138430
p^5-p^2 is given in A138405
(p^5-p^2)/2 is given in A138431
p^5-p^3 is given in A138406
(p^5-p^3)/2 is given in A138432
(p^5-p^3)/3 is given in A138433
(p^5-p^3)/4 is given in A138434
(p^5-p^3)/6 is given in A138435
(p^5-p^3)/8 is given in A138436
(p^5-p^3)/12 is given in A138437
(p^5-p^3)/24 is given in A138438
p^5-p^4 is given in A138407
(p^5-p^4)/2 is given in A138439
p^6-p is given in A138408
(p^6-p)/2 is given in A138440
p^6-p^2 is given in A138409
(p^6-p^2)/2 is given in A138441
(p^6-p^2)/3 is given in A138442
(p^6-p^2)/4 is given in A138443
(p^6-p^2)/5 is given in A138444
(p^6-p^2)/6 is given in A138445
(p^6-p^2)/10 is given in A138446
(p^6-p^2)/12 is given in A138447
(p^6-p^2)/15 is given in A138448
(p^6-p^2)/20 is given in A122220
(p^6-p^2)/30 is given in A138450
(p^6-p^2)/60 is given in A138451
p^6-p^3 is given in A138410
(p^6-p^3)/2 is given in A138452
p^6-p^4 is given in A138411
(p^6-p^4)/2 is given in A138453
(p^6-p^4)/3 is given in A138454
(p^6-p^4)/4 is given in A138455
(p^6-p^4)/6 is given in A138456
(p^6-p^4)/8 is given in A138457
(p^6-p^4)/12 is given in A138458
(p^6-p^4)/24 is given in A138459
p^6-p^5 is given in A138412
(p^6-p^5)/2 is given in A138460

Programs

  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
  • PARI
    forprime(p=2,1e3,print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011
Showing 1-10 of 14 results. Next