A143548
Irregular triangle of numbers k < p^2 such that p^2 divides k^(p-1)-1, with p=prime(n).
Original entry on oeis.org
1, 1, 8, 1, 7, 18, 24, 1, 18, 19, 30, 31, 48, 1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288, 1, 28, 54, 62, 68, 69, 99, 116, 127, 234, 245, 262, 292, 293, 299, 307, 333, 360
Offset: 1
(2) 1,
(3) 1, 8,
(5) 1, 7, 18, 24,
(7) 1, 18, 19, 30, 31, 48,
(11) 1, 3, 9, 27, 40, 81, 94, 112, 118, 120,
(13) 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168,
(17) 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288,
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2005
Cf.
A039678,
A056020,
A056021,
A056022,
A056024,
A056025,
A056027,
A056028,
A056031,
A056034,
A056035,
A096082,
A138416.
-
f:= proc(n) local p,j,x;
p:= ithprime(n);
x:= numtheory:-primroot(p);
op(sort([seq(x^(i*p) mod p^2, i=0..p-2)]))
end proc:
map(f, [$1..20]); # Robert Israel, Sep 27 2016
-
Flatten[Table[p=Prime[n]; Select[Range[p^2], PowerMod[ #,p-1,p^2]==1&], {n,50}]] (* T. D. Noe, Aug 24 2008 *)
Flatten[Table[p=Prime[n]; r=PrimitiveRoot[p]; b=PowerMod[r,p,p^2]; Sort[NestList[Mod[b*#,p^2]&,1,p-2]], {n,50}]] (* Faster version from T. D. Noe, Aug 26 2008 *)
A135177
a(n) = p^2*(p-1), where p = prime(n).
Original entry on oeis.org
4, 18, 100, 294, 1210, 2028, 4624, 6498, 11638, 23548, 28830, 49284, 67240, 77658, 101614, 146068, 201898, 223260, 296274, 352870, 383688, 486798, 564898, 697048, 903264, 1020100, 1082118, 1213594, 1283148, 1430128, 2032254, 2230930
Offset: 1
a(4) = 294 because the 4th prime number is 7, 7^2 = 49, 7-1 = 6 and 49 * 6 = 294.
-
[(p^3-p^2): p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 15 2010
-
Table[Prime[n]^3-Prime[n]^2, {n, 1, 12}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Table[p^3-p^2,{p,Prime[Range[40]]}] (* Harvey P. Dale, Jan 15 2015 *)
-
forprime(p=2,1e3,print1(p^2*(p-1)", ")) \\ Charles R Greathouse IV, Jun 16 2011
-
A135177(n) = eulerphi(prime(n)^3); \\ Antti Karttunen, Dec 14 2024
-
A135177(n) = ((p->(p-1)*p*p)(prime(n))); \\ Antti Karttunen, Dec 14 2024
A138459
a(n) = ((n-th prime)^6-(n-th prime)^4)/12.
Original entry on oeis.org
4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
Offset: 1
-
a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
-
forprime(p=2,1e3,print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011
Showing 1-3 of 3 results.
Comments