cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A117762 a(1) = 6; for n>1, a(n) = prime(n)*(prime(n)^2 - 1)/2.

Original entry on oeis.org

6, 12, 60, 168, 660, 1092, 2448, 3420, 6072, 12180, 14880, 25308, 34440, 39732, 51888, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 285852, 352440, 456288, 515100, 546312, 612468, 647460, 721392, 1024128, 1123980, 1285608, 1342740, 1653900
Offset: 1

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Comments

a(n) is the order of the matrix group PSL(2,prime(n)). - corrected by Tom Edgar, Sep 28 2015

References

  • Blyth and Robertson, Essential Student Algebra, Volume 5: Groups,Chapman and Hall, New York, page 14

Crossrefs

Programs

  • Magma
    [6] cat [NthPrime(n)*(NthPrime(n)^2-1)/2: n in [2..40]]; // Vincenzo Librandi, Sep 29 2015
    
  • Mathematica
    a[n_]= If[n==1, 6, Prime[n]*(Prime[n]^2 -1)/2];
    Table[a[n], {n,40}]
    Join[{6}, Table[Prime[n] (Prime[n]^2 - 1)/2, {n, 2, 40}]] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    a(n) = prime(n)*(prime(n)^2-1)/2;
    vector(40, n, a(n+1)) \\ Altug Alkan, Sep 28 2015
    
  • SageMath
    def A117762(n): return nth_prime(n)*(nth_prime(n)^2-1)/2 + 3*int(n==1)
    [A117762(n) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = A127918(n), n>1.
a(n) = A000040(n)*A084921(n). - R. J. Mathar, Jan 29 2024

A127919 1/3 of product of three numbers: the n-th prime, the previous number and the following number.

Original entry on oeis.org

2, 8, 40, 112, 440, 728, 1632, 2280, 4048, 8120, 9920, 16872, 22960, 26488, 34592, 49608, 68440, 75640, 100232, 119280, 129648, 164320, 190568, 234960, 304192, 343400, 364208, 408312, 431640, 480928, 682752, 749320, 857072, 895160, 1102600
Offset: 1

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

Number of irreducible monic cubic polynomials over GF(prime(n)). - Robert Israel, Jan 06 2015

Crossrefs

Programs

  • Magma
    [(p^3 - p) div 3: p in PrimesUpTo(150)]; // Vincenzo Librandi, Jan 08 2015
  • Maple
    seq((ithprime(n)^3 - ithprime(n))/3, n=1..100); # Robert Israel, Jan 06 2015
  • Mathematica
    Table[(Prime[n] + 1) Prime[n] (Prime[n] - 1)/3, {n, 100}]
  • PARI
    forprime(p=2,1e3,print1(2*binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = (prime(n)^3 - prime(n))/3. - Wesley Ivan Hurt, Oct 15 2023

A127920 1/6 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

1, 4, 20, 56, 220, 364, 816, 1140, 2024, 4060, 4960, 8436, 11480, 13244, 17296, 24804, 34220, 37820, 50116, 59640, 64824, 82160, 95284, 117480, 152096, 171700, 182104, 204156, 215820, 240464, 341376, 374660, 428536, 447580, 551300, 573800, 644956
Offset: 1

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Crossrefs

Programs

  • Magma
    [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/6: n in [1..40]]; // Vincenzo Librandi, Apr 09 2017
  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/6, {n, 1, 100}]
    ((#-1)#(#+1))/6&/@Prime[Range[40]] (* Harvey P. Dale, Dec 23 2019 *)
  • PARI
    forprime(p=2,1e3,print1(binomial(p+1,3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from sympy import prime
    print([(prime(n) - 1)*prime(n)*(prime(n) + 1)//6 for n in range(1, 101)]) # Indranil Ghosh, Apr 09 2017
    

Formula

a(n) = A127918(n)/3. - Michel Marcus, Apr 09 2017

A127922 1/24 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

1, 5, 14, 55, 91, 204, 285, 506, 1015, 1240, 2109, 2870, 3311, 4324, 6201, 8555, 9455, 12529, 14910, 16206, 20540, 23821, 29370, 38024, 42925, 45526, 51039, 53955, 60116, 85344, 93665, 107134, 111895, 137825, 143450, 161239, 180441, 194054
Offset: 2

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

The product of (n-1), n, and (n+1) = n^3 - n. - Harvey P. Dale, Jan 17 2011
For n > 2, a(n) = A001318(n-2) * A007310(n-1), if A007310(n-1) is prime. Also a(n) is a subsequence of A000330. - Richard R. Forberg, Dec 25 2013
If p is an odd prime it can always be the side length of a leg of a primitive Pythagorean triangle. However it constrains the other leg to have a side length of (p^2-1)/2 and the hypotenuse to have a side length of (p^2+1)/2. The resulting triangle has an area equal to (p-1)*p*(p+1)/4. a(n) is 1/6 the area of such triangles. - Frank M Jackson, Dec 06 2017

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/24, {n, 1, 100}] (#^3-#)/ 24&/@ Prime[Range[2,40]] (* Harvey P. Dale, Jan 17 2011 *)
    ((#-1)#(#+1))/24&/@Prime[Range[2,40]] (* Harvey P. Dale, Jan 20 2023 *)
  • PARI
    for(n=2,25, print1((prime(n)+1)*prime(n)*(prime(n)-1)/24, ", ")) \\ G. C. Greubel, Jun 19 2017

Formula

a(n) = A011842(A000040(n) + 1) = A000330((A000040(n) - 1) / 2).

A138416 a(n) = (p^3 - p^2)/2, where p = prime(n).

Original entry on oeis.org

2, 9, 50, 147, 605, 1014, 2312, 3249, 5819, 11774, 14415, 24642, 33620, 38829, 50807, 73034, 100949, 111630, 148137, 176435, 191844, 243399, 282449, 348524, 451632, 510050, 541059, 606797, 641574, 715064, 1016127, 1115465, 1276292, 1333149
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Comments

Differences (p^k - p^m)/q with k > m:
expression OEIS sequence
-------------- -------------
p^2 - p A036689
(p^2 - p)/2 A008837
p^3 - p A127917
(p^3 - p)/2 A127918
(p^3 - p)/3 A127919
(p^3 - p)/6 A127920
p^3 - p^2 A135177
(p^3 - p^2)/2 this sequence
p^4 - p A138401
(p^4 - p)/2 A138417
p^4 - p^2 A138402
(p^4 - p^2)/2 A138418
(p^4 - p^2)/3 A138419
(p^4 - p^2)/4 A138420
(p^4 - p^2)/6 A138421
(p^4 - p^2)/12 A138422
p^4 - p^3 A138403
(p^4 - p^3)/2 A138423
p^5 - p A138404
(p^5 - p)/2 A138424
(p^5 - p)/3 A138425
(p^5 - p)/5 A138426
(p^5 - p)/6 A138427
(p^5 - p)/10 A138428
(p^5 - p)/15 A138429
(p^5 - p)/30 A138430
p^5 - p^2 A138405
(p^5 - p^2)/2 A138431
p^5 - p^3 A138406
(p^5 - p^3)/2 A138432
(p^5 - p^3)/3 A138433
(p^5 - p^3)/4 A138434
(p^5 - p^3)/6 A138435
(p^5 - p^3)/8 A138436
(p^5 - p^3)/12 A138437
(p^5 - p^3)/24 A138438
p^5 - p^4 A138407
(p^5 - p^4)/2 A138439
p^6 - p A138408
(p^6 - p)/2 A138440
p^6 - p^2 A138409
(p^6 - p^2)/2 A138441
(p^6 - p^2)/3 A138442
(p^6 - p^2)/4 A138443
(p^6 - p^2)/5 A138444
(p^6 - p^2)/6 A138445
(p^6 - p^2)/10 A138446
(p^6 - p^2)/12 A138447
(p^6 - p^2)/15 A138448
(p^6 - p^2)/20 A122220
(p^6 - p^2)/30 A138450
(p^6 - p^2)/60 A138451
p^6 - p^3 A138410
(p^6 - p^3)/2 A138452
p^6 - p^4 A138411
(p^6 - p^4)/2 A138453
(p^6 - p^4)/3 A138454
(p^6 - p^4)/4 A138455
(p^6 - p^4)/6 A138456
(p^6 - p^4)/8 A138457
(p^6 - p^4)/12 A138458
(p^6 - p^4)/24 A138459
p^6 - p^5 A138412
(p^6 - p^5)/2 A138460
.
We can prove that for n>1, a(n) is the remainder of the Euclidean division of Sum_{k=0..p-1} k^p by p^3 where p = prime(n). - Pierre Vandaële, Nov 30 2024

Programs

  • Magma
    [(p^3-p^2)/2: p in PrimesUpTo(1000)]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
    (#^3-#^2)/2&/@Prime[Range[50]] (* Harvey P. Dale, Nov 01 2020 *)
  • PARI
    forprime(p=2,1e3,print1((p^3-p^2)/2", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Extensions

Definition corrected by T. D. Noe, Aug 25 2008

A127921 1/12 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

2, 10, 28, 110, 182, 408, 570, 1012, 2030, 2480, 4218, 5740, 6622, 8648, 12402, 17110, 18910, 25058, 29820, 32412, 41080, 47642, 58740, 76048, 85850, 91052, 102078, 107910, 120232, 170688, 187330, 214268, 223790, 275650, 286900, 322478, 360882, 388108, 431462
Offset: 2

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

Summation of products of partitions into two parts of prime(n): a(6) = (1*12) + (2*11) + (3*10) + (4*9) + (5*8) + (6*7) = 182. - César Aguilera, Feb 20 2018

Crossrefs

Programs

  • Magma
    [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/12: n in [2..50]]; // G. C. Greubel, Apr 30 2018
  • Maple
    a:= n-> (p->p*(p^2-1)/12)(ithprime(n)):
    seq(a(n), n=2..40);  # Alois P. Heinz, Mar 08 2022
  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/12, {n, 2, 100}]
    ((#-1)#(#+1))/12&/@Prime[Range[2,40]] (* Harvey P. Dale, Mar 08 2022 *)
  • PARI
    a(n,p=prime(n))=binomial(p+1,3)/2 \\ Charles R Greathouse IV, Feb 28 2018
    

Formula

a(n) ~ (n log n)^3/12. - Charles R Greathouse IV, Feb 28 2018

A138459 a(n) = ((n-th prime)^6-(n-th prime)^4)/12.

Original entry on oeis.org

4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
Offset: 1

Views

Author

Artur Jasinski, Mar 22 2008

Keywords

Comments

Differences (p^k-p^m)/q such that k > m:
p^2-p is given in A036689
(p^2-p)/2 is given in A008837
p^3-p is given in A127917
(p^3-p)/2 is given in A127918
(p^3-p)/3 is given in A127919
(p^3-p)/6 is given in A127920
p^3-p^2 is given in A135177
(p^3-p^2)/2 is given in A138416
p^4-p is given in A138401
(p^4-p)/2 is given in A138417
p^4-p^2 is given in A138402
(p^4-p^2)/2 is given in A138418
(p^4-p^2)/3 is given in A138419
(p^4-p^2)/4 is given in A138420
(p^4-p^2)/6 is given in A138421
(p^4-p^2)/12 is given in A138422
p^4-p^3 is given in A138403
(p^4-p^3)/2 is given in A138423
p^5-p is given in A138404
(p^5-p)/2 is given in A138424
(p^5-p)/3 is given in A138425
(p^5-p)/5 is given in A138426
(p^5-p)/6 is given in A138427
(p^5-p)/10 is given in A138428
(p^5-p)/15 is given in A138429
(p^5-p)/30 is given in A138430
p^5-p^2 is given in A138405
(p^5-p^2)/2 is given in A138431
p^5-p^3 is given in A138406
(p^5-p^3)/2 is given in A138432
(p^5-p^3)/3 is given in A138433
(p^5-p^3)/4 is given in A138434
(p^5-p^3)/6 is given in A138435
(p^5-p^3)/8 is given in A138436
(p^5-p^3)/12 is given in A138437
(p^5-p^3)/24 is given in A138438
p^5-p^4 is given in A138407
(p^5-p^4)/2 is given in A138439
p^6-p is given in A138408
(p^6-p)/2 is given in A138440
p^6-p^2 is given in A138409
(p^6-p^2)/2 is given in A138441
(p^6-p^2)/3 is given in A138442
(p^6-p^2)/4 is given in A138443
(p^6-p^2)/5 is given in A138444
(p^6-p^2)/6 is given in A138445
(p^6-p^2)/10 is given in A138446
(p^6-p^2)/12 is given in A138447
(p^6-p^2)/15 is given in A138448
(p^6-p^2)/20 is given in A122220
(p^6-p^2)/30 is given in A138450
(p^6-p^2)/60 is given in A138451
p^6-p^3 is given in A138410
(p^6-p^3)/2 is given in A138452
p^6-p^4 is given in A138411
(p^6-p^4)/2 is given in A138453
(p^6-p^4)/3 is given in A138454
(p^6-p^4)/4 is given in A138455
(p^6-p^4)/6 is given in A138456
(p^6-p^4)/8 is given in A138457
(p^6-p^4)/12 is given in A138458
(p^6-p^4)/24 is given in A138459
p^6-p^5 is given in A138412
(p^6-p^5)/2 is given in A138460

Programs

  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
  • PARI
    forprime(p=2,1e3,print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011

A140392 Triples of height (a prime p), base length x and side length y=z of isosceles triangles.

Original entry on oeis.org

3, 8, 5, 5, 24, 13, 7, 48, 25, 11, 120, 61, 13, 168, 85, 17, 288, 145, 19, 360, 181, 23, 528, 265, 29, 840, 421, 31, 960, 481, 37, 1368, 685, 41, 1680, 841, 43, 1848, 925, 47, 2208, 1105, 53, 2808, 1405, 59, 3480, 1741, 61, 3720, 1861, 67, 4488, 2245, 71, 5040, 2521
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 13 2008

Keywords

Comments

Or: consecutive triples of p=A000040(j), x=2*A084920(j), y=z= A066885(j), j>=2.
The area of the triangles is half the product of height and base length, p*x/2=A127918(j).

Examples

			Contains (p,x,y) = (3,8,5), (5,24,13), (7,48,25), (11,120,61), ...
		

Extensions

Edited and extended by R. J. Mathar, Jun 17 2008
Showing 1-8 of 8 results.