A127922
1/24 of product of three numbers: n-th prime, previous and following number.
Original entry on oeis.org
1, 5, 14, 55, 91, 204, 285, 506, 1015, 1240, 2109, 2870, 3311, 4324, 6201, 8555, 9455, 12529, 14910, 16206, 20540, 23821, 29370, 38024, 42925, 45526, 51039, 53955, 60116, 85344, 93665, 107134, 111895, 137825, 143450, 161239, 180441, 194054
Offset: 2
-
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/24, {n, 1, 100}] (#^3-#)/ 24&/@ Prime[Range[2,40]] (* Harvey P. Dale, Jan 17 2011 *)
((#-1)#(#+1))/24&/@Prime[Range[2,40]] (* Harvey P. Dale, Jan 20 2023 *)
-
for(n=2,25, print1((prime(n)+1)*prime(n)*(prime(n)-1)/24, ", ")) \\ G. C. Greubel, Jun 19 2017
A380790
Length of the n-th Golomb ruler constructed by the Paul Erdős and Pál Turán formula.
Original entry on oeis.org
20, 110, 308, 1254, 2106, 4760, 6650, 11822, 23954, 29202, 49950, 68060, 78518, 102460, 147446, 203432, 225090, 298418, 354858, 386316, 489484, 568052, 700964, 907920, 1025150, 1086856, 1218944, 1289034, 1436456, 2039620, 2238790, 2561900, 2675472, 3296774, 3430418
Offset: 2
n | p | Golomb ruler notches | a(n)
---+----+--------------------------------------------------+-------
2 | 3 | 0, 7, 13 | 20
3 | 5 | 0, 11, 24, 34, 41 | 110
4 | 7 | 0, 15, 32, 44, 58, 74, 85 | 308
5 | 11 | 0, 23, 48, 75, 93, 113, 135, 159, 185, 202, 221 | 1254
-
a(n)= if(n==2, return(20)); my(p=prime(n)); if(bitand(p, 3)==1, return((p*(p-1)*(2*p+1))/2)); if(bitand(p, 3)==3, return((p*(p-1)*(2*p+1))/2 - p * qfbclassno(-p)));
-
from sympy import prime
from math import isqrt
def a(n):
p = prime(n)
if p & 3 == 1: return (p*(p-1)*(2*p+1))//2
m = isqrt(p-1)
return (p-1) * p**2 + (m*(m+1)*(2*m+1))//6 + sum(pow(k,2,p) for k in range(m+1,p))
print([a(n) for n in range(2, 37) ])
Showing 1-2 of 2 results.
Comments