cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John McGee

John McGee's wiki page.

John McGee has authored 1 sequences.

A244509 Order of GL_2(p), the general linear group over F_p, where p runs through the primes.

Original entry on oeis.org

6, 48, 480, 2016, 13200, 26208, 78336, 123120, 267168, 682080, 892800, 1822176, 2755200, 3337488, 4773696, 7738848, 11908560, 13615200, 19845936, 25048800, 28003968, 38450880, 46879728, 62029440, 87607296, 103020000, 111447648, 129843216, 139851360
Offset: 1

Author

John McGee, Nov 15 2014

Keywords

Examples

			For n=3 (p=5) we have a(3) = 4*5*(25-1) = 480.
		

Crossrefs

Cf. A127917 (order of SL_2(p)), A047927.

Programs

  • Magma
    [(NthPrime(n)-1)*NthPrime(n)*(NthPrime(n)^2-1): n in [1..100]]; // Vincenzo Librandi, Aug 15 2018
  • Mathematica
    gl2psz[p_] := (p - 1) p (p^2 - 1); sqg = gl2psz/@Prime@Range[m]
    Table[(Prime[n] - 1) Prime[n] (Prime[n]^2 - 1), {n, 30}] (* Vincenzo Librandi, Aug 15 2018 *)
  • PARI
    a(n) = { my(p=prime(n)); (p-1)*p*(p^2-1) } \\ Joerg Arndt, Nov 23 2014
    

Formula

a(n) = (p-1)*p*(p^2-1) where p = prime(n).
a(n) = A127917(n)*(prime(n)-1).
Subsequence of A047927. - Michel Marcus, Nov 25 2014
Sum 1/a(n) = A382584. - R. J. Mathar, Mar 31 2025