A110494 Least k such that prime(n)^2 divides binomial(2k,k).
3, 5, 13, 25, 61, 85, 145, 181, 265, 421, 481, 685, 841, 925, 1105, 1405, 1741, 1861, 2245, 2521, 2665, 3121, 3445, 3961, 4705, 5101, 5305, 5725, 5941, 6385, 8065, 8581, 9385, 9661, 11101, 11401, 12325, 13285, 13945, 14965, 16021, 16381, 18241, 18625, 19405
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 60 terms from T. D. Noe)
Crossrefs
Cf. A110493 (largest prime p such that p^2 divides binomial(2n, n)).
Programs
-
Mathematica
t=Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>1&]; If[s=={}, 0, s[[ -1, 1]]], {n, 100}]; Table[p=Prime[i]; First[Flatten[Position[t, p]]], {i, PrimePi[Max[t]]}] lk[n_]:=Module[{k=1,c=Prime[n]^2},While[!Divisible[Binomial[2k,k],c], k=k+2]; k]; Array[lk,40] (* Harvey P. Dale, Oct 10 2012 *)
-
PARI
fv(n,p)=my(s); while(n\=p, s+=n); s a(n)=my(p=prime(n),k=p^2\2+1); while(fv(2*k,p)-2*fv(k,p)<2,k++); k \\ Charles R Greathouse IV, Mar 27 2014
-
PARI
a(n)=prime(n)^2\2+1 \\ Charles R Greathouse IV, Mar 27 2014
Formula
a(n) = (prime(n)^2+1)/2 for n > 1.
a(n) = A066885(n), n > 1. - R. J. Mathar, Aug 18 2008
Comments