cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A110494 Least k such that prime(n)^2 divides binomial(2k,k).

Original entry on oeis.org

3, 5, 13, 25, 61, 85, 145, 181, 265, 421, 481, 685, 841, 925, 1105, 1405, 1741, 1861, 2245, 2521, 2665, 3121, 3445, 3961, 4705, 5101, 5305, 5725, 5941, 6385, 8065, 8581, 9385, 9661, 11101, 11401, 12325, 13285, 13945, 14965, 16021, 16381, 18241, 18625, 19405
Offset: 1

Views

Author

T. D. Noe, Jul 22 2005

Keywords

Comments

For prime p > sqrt(2n), p^2 does not divide binomial(2n,n).

Crossrefs

Cf. A110493 (largest prime p such that p^2 divides binomial(2n, n)).

Programs

  • Mathematica
    t=Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>1&]; If[s=={}, 0, s[[ -1, 1]]], {n, 100}]; Table[p=Prime[i]; First[Flatten[Position[t, p]]], {i, PrimePi[Max[t]]}]
    lk[n_]:=Module[{k=1,c=Prime[n]^2},While[!Divisible[Binomial[2k,k],c], k=k+2]; k]; Array[lk,40] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    fv(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(p=prime(n),k=p^2\2+1); while(fv(2*k,p)-2*fv(k,p)<2,k++); k \\ Charles R Greathouse IV, Mar 27 2014
    
  • PARI
    a(n)=prime(n)^2\2+1 \\ Charles R Greathouse IV, Mar 27 2014

Formula

a(n) = (prime(n)^2+1)/2 for n > 1.
a(n) = A066885(n), n > 1. - R. J. Mathar, Aug 18 2008

A368085 Square array read by ascending antidiagonals: row n is the trajectory of P under the 'Px+1' map, where P = n-th prime.

Original entry on oeis.org

2, 3, 5, 5, 10, 11, 7, 26, 5, 23, 11, 50, 13, 16, 47, 13, 122, 25, 66, 8, 95, 17, 170, 61, 5, 33, 4, 191, 19, 290, 85, 672, 1, 11, 2, 383, 23, 362, 145, 17, 336, 8, 56, 1, 767, 29, 530, 181, 29, 222, 168, 4, 28, 4, 1535, 31, 842, 265, 3440, 494, 111, 84, 2, 14, 2, 3071
Offset: 1

Views

Author

Paolo Xausa, Dec 11 2023

Keywords

Comments

The 'Px+1 map' is defined as follows: if there exists p = smallest prime < P which divides x then x = x/p, otherwise x = P*x + 1.

Examples

			Array begins:
  [ 1]   2,   5,  11,    23,   47,   95, 191, 383,  767, ... = A153893
  [ 2]   3,  10,   5,    16,    8,    4,   2,   1,    4, ... = A033478
  [ 3]   5,  26,  13,    66,   33,   11,  56,  28,   14, ... = A057688
  [ 4]   7,  50,  25,     5,    1,    8,   4,   2,    1, ... = A368113
  [ 5]  11, 122,  61,   672,  336,  168,  84,  42,   21, ... = A368114
  [ 6]  13, 170,  85,    17,  222,  111,  37, 482,  241, ... = A057684
  [ 7]  17, 290, 145,    29,  494,  247,  19, 324,  162, ... = A368115
  [ 8]  19, 362, 181,  3440, 1720,  860, 430, 215,   43, ... = A057685
  [ 9]  23, 530, 265,    53, 1220,  610, 305,  61, 1404, ... = A057686
  [10]  29, 842, 421, 12210, 6105, 2035, 407,  37, 1074, ... = A057687
  ...    |    |    |
      A000040 | A066885 (from n = 2)
           A066872
		

Crossrefs

Columns 1-3: A000040, A066872, A066885 (from n = 2).
Main diagonal gives A368159.

Programs

  • Mathematica
    Px1[p_,n_]:=Catch[For[i=1,iA368085list[dmax_]:=With[{a=Reverse[Table[NestList[Px1[Prime[n],#]&,Prime[n],dmax-n],{n,dmax}]]},Array[Diagonal[a,#]&,dmax,1-dmax]];
    A368085list[15] (* Generates 15 antidiagonals *)

A066886 Sum of the elements in any transversal of a prime(n) X prime(n) array containing the numbers from 1 to prime(n)^2 in standard order.

Original entry on oeis.org

5, 15, 65, 175, 671, 1105, 2465, 3439, 6095, 12209, 14911, 25345, 34481, 39775, 51935, 74465, 102719, 113521, 150415, 178991, 194545, 246559, 285935, 352529, 456385, 515201, 546415, 612575, 647569, 721505, 1024255, 1124111, 1285745
Offset: 1

Views

Author

Enoch Haga, Jan 22 2002

Keywords

Comments

a(n) is the sum of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).

Crossrefs

Programs

  • Maple
    map(t -> t*(t^2+1)/2, [seq(ithprime(i),i=1..100)]); # Robert Israel, Apr 04 2018
  • Mathematica
    a[n_] := Prime[n] (Prime[n]^2 + 1)/2; Table[a[n], {n, 50}]
  • PARI
    apply(x->(x*(x^2+1)/2), primes(100)) \\ Michel Marcus, Apr 04 2018

Formula

a(n) = prime(n)*(prime(n)^2+1)/2, where prime(n) is the n-th prime.
a(n) = A006003(prime(n)). - Michel Marcus, Apr 04 2018
a(n) = A006254(n-1)^4 - A005097(n-1)^4, for n>1. - Dimitris Valianatos, Apr 10 2018

Extensions

Edited by Dean Hickerson, Jun 08 2002

A066883 Number of primes in the interval [p(n), p(n)^2] minus p(n), where p(n) is the n-th prime.

Original entry on oeis.org

0, 0, 2, 5, 15, 21, 38, 46, 68, 108, 121, 171, 210, 227, 268, 341, 412, 441, 524, 585, 612, 711, 781, 888, 1042, 1126, 1165, 1247, 1286, 1381, 1720, 1814, 1972, 2018, 2306, 2361, 2536, 2715, 2838, 3029, 3217, 3290, 3635, 3709, 3848, 3920, 4370, 4836
Offset: 1

Views

Author

Enoch Haga, Jan 26 2002

Keywords

Comments

Haga's conjecture (see link below) is that if the integers from 1 to p^2 (p prime) are put in a p by p square in standard order, then there's a transversal consisting of primes; i.e., a set of p primes containing exactly one number in each row and column. E.g., for p=5 the primes 5, 7, 11, 19, 23 work. Since p is needed for the p-th column, primes less than p can't be used. a(n) is the number of primes available minus the number needed for the transversal.

References

  • Paulo Ribenboim, The New Book of Prime Number Records, 3rd ed., 1995, Springer, pp. 397-398

Crossrefs

Programs

  • BASIC
    20 for Y=1 to 140 30 A=nxtprm(A):B=A^2 40 for X=A to B 50 if X=prmdiv(X) then C=C+1 60 next X 70 print A; C; C-A; "-"; 80 C=0 90 next Y
    
  • Mathematica
    a[n_] := PrimePi[(p=Prime[n])^2]-PrimePi[p-1]-p
  • PARI
    { for (n=1, 1000, a=primepi((p=prime(n))^2) - primepi(p - 1) - p; write("b066883.txt", n, " ", a) ) } \\ Harry J. Smith, Apr 04 2010

Formula

a(n) = A054272(n)-A000040(n).

Extensions

Edited by Dean Hickerson, Jun 08 2002

A155185 Primes in A155175.

Original entry on oeis.org

5, 13, 113, 1741, 5101, 8581, 9941, 21841, 26681, 47741, 82013, 481181, 501001, 1009621, 2356621, 2542513, 3279361, 3723721, 4277813, 7757861, 8124481, 13204661, 25311613, 30772013, 44170601, 48619661, 51521401, 52541501, 54236113, 60731221, 72902813
Offset: 1

Views

Author

Keywords

Comments

Hypotenuse C (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes. p=1,q=2,a=3,b=4,c=5=prime,s=12-+1primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[c],AppendTo[lst,c]]],{n,8!}];lst (* corrected by Ray Chandler, Feb 11 2020 *)

Extensions

Sequence corrected by Ray Chandler, Feb 11 2020

A140384 Consecutive triples (x=(p^2-1)/2,2*p,y=z=(p^2+1)/2), p prime, representing isosceles triangles with sides (x,y,z).

Original entry on oeis.org

4, 6, 5, 12, 10, 13, 24, 14, 25, 60, 22, 61, 84, 26, 85, 144, 34, 145, 180, 38, 181, 264, 46, 265, 420, 58, 421, 480, 62, 481, 684, 74, 685, 840, 82, 841, 924, 86, 925, 1104, 94, 1105, 1404, 106, 1405, 1740, 118, 1741, 1860, 122, 1861, 2244, 134, 2245, 2520, 142
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 13 2008

Keywords

Comments

Or: Triples A084921(i), A100484(i), A066885(i), i=2,3... in compound order.

Extensions

Edited by R. J. Mathar, Jun 16 2008 and Jun 17 2008

A143822 Primes p such that sigma_0((p*p + 1)/2) = 4.

Original entry on oeis.org

13, 17, 23, 31, 37, 53, 67, 89, 97, 103, 109, 113, 127, 137, 149, 151, 163, 167, 179, 197, 211, 223, 227, 229, 241, 263, 269, 277, 281, 283, 311, 331, 347, 359, 367, 373, 383, 389, 397, 419, 431, 433, 439, 479, 491, 503, 509, 541, 547, 587, 601, 617, 619, 653
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 02 2008

Keywords

Comments

A048161 are primes p such that sigma_0((p*p+1)/2)= 2. Primes p such that sigma_0((p*p+1)/2)= 3 gives all RMS numbers (A140480) with 2 divisors (prime RMS numbers, prime NSW numbers (A088165)) and all RMS numbers with 4 divisors as those are a multiple of two nonequal RMS prime numbers. In general we look after primes p such that sigma_0((p*p+1)/2) equals some given integer k. RMS numbers n=p_1*...*p_t have k=2^t divisors (p_i prime, t integer >=1) and sigma_2(p_1*...*p_t)=(2^t)* (q_1^r_1 *...* q_t^r_t), q_j prime, r_t integer >=1.

Crossrefs

Programs

  • Maple
    A066885 := proc(n) local p; p :=ithprime(n) ; (p^2+1)/2 ; end: A000005 := proc(n) numtheory[tau](n) ; end: for n from 2 to 300 do if A000005(A066885(n)) = 4 then printf("%d,",ithprime(n)) ; fi; od: # R. J. Mathar, Sep 04 2008
  • Mathematica
    Select[Range[650], PrimeQ[#] && DivisorSigma[0, (#^2 + 1)/2] == 4 &] (* Amiram Eldar, Mar 11 2020 *)
    Select[Prime[Range[150]],DivisorSigma[0,(#^2+1)/2]==4&] (* Harvey P. Dale, Sep 22 2022 *)

Extensions

97 inserted and extended by R. J. Mathar, Sep 04 2008

A155186 Primes in A155171.

Original entry on oeis.org

2, 7, 29, 101, 107, 197, 227, 457, 647, 829, 1549, 1627, 2221, 2309, 2347, 2521, 2677, 2801, 3181, 3299, 3529, 3541, 3557, 3739, 3769, 4231, 4549, 4871, 4987, 5651, 5827, 5881, 6037, 6079, 6637, 6827, 7517, 7639, 7937, 9787, 11621, 12041, 12329, 13009
Offset: 1

Views

Author

Keywords

Comments

Numbers p (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[p],AppendTo[lst,p]]],{n,8!}];lst

A370760 Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that a = prime(n).

Original entry on oeis.org

3, 4, 5, 5, 12, 13, 7, 24, 25, 11, 60, 61, 13, 84, 85, 17, 144, 145, 19, 180, 181, 23, 264, 265, 29, 420, 421, 31, 480, 481, 37, 684, 685, 41, 840, 841, 43, 924, 925, 47, 1104, 1105, 53, 1404, 1405, 59, 1740, 1741, 61, 1860, 1861, 67, 2244
Offset: 2

Views

Author

Keywords

Comments

See Corolario 5.2.3 of the reference.

Examples

			Table begins:
  n=2:   3,   4,   5;
  n=3:   5,  12,  13;
  n=4:   7,  24,  25;
  n=5:  11,  60,  61;
  n=6:  13,  84,  85;
  ...
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A000040, A065091 (short leg), A216244 (long leg), A066885 (hypotenuse), A005097 (inradius).

Programs

  • Mathematica
    Apply[Join, Map[{#,(#^2-1)/2,(#^2+1)/2}&,Prime[Range[2,31]]]]

Formula

Row n = (a, b, c) = (p, ( p^2 - 1 ) / 2, ( p^2 + 1 ) / 2), where p = prime(n) = A000040(n).

A140392 Triples of height (a prime p), base length x and side length y=z of isosceles triangles.

Original entry on oeis.org

3, 8, 5, 5, 24, 13, 7, 48, 25, 11, 120, 61, 13, 168, 85, 17, 288, 145, 19, 360, 181, 23, 528, 265, 29, 840, 421, 31, 960, 481, 37, 1368, 685, 41, 1680, 841, 43, 1848, 925, 47, 2208, 1105, 53, 2808, 1405, 59, 3480, 1741, 61, 3720, 1861, 67, 4488, 2245, 71, 5040, 2521
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 13 2008

Keywords

Comments

Or: consecutive triples of p=A000040(j), x=2*A084920(j), y=z= A066885(j), j>=2.
The area of the triangles is half the product of height and base length, p*x/2=A127918(j).

Examples

			Contains (p,x,y) = (3,8,5), (5,24,13), (7,48,25), (11,120,61), ...
		

Extensions

Edited and extended by R. J. Mathar, Jun 17 2008
Showing 1-10 of 11 results. Next