cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084920 a(n) = (prime(n)-1)*(prime(n)+1).

Original entry on oeis.org

3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013
Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016

Crossrefs

Programs

Formula

a(n) = A006093(n) * A008864(n);
a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.
Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009
a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009
a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017
a(n) = 24 * A024702(n) for n > 2. - Jianing Song, Apr 28 2019
Sum_{n>=1} 1/a(n) = A154945. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = Pi^2/6 (A013661).
Product_{n>=1} (1 - 1/a(n)) = A065469. (End)

A049001 a(n) = prime(n)^2 - 2.

Original entry on oeis.org

2, 7, 23, 47, 119, 167, 287, 359, 527, 839, 959, 1367, 1679, 1847, 2207, 2807, 3479, 3719, 4487, 5039, 5327, 6239, 6887, 7919, 9407, 10199, 10607, 11447, 11879, 12767, 16127, 17159, 18767, 19319, 22199, 22799, 24647, 26567, 27887
Offset: 1

Views

Author

Keywords

Comments

Smallest numbers k such that k*prime(n)^2 + 1 is a square. - Bruno Berselli, Apr 19 2013

Crossrefs

Programs

Formula

a(n) = A001248(n) - 2.
a(n) = A182200(n) + 1. - Wesley Ivan Hurt, Oct 11 2013
Product_{n>=1} (1 - 1/a(n)) = A065481. - Amiram Eldar, Nov 07 2022

A182200 a(n) = prime(n)^2-3.

Original entry on oeis.org

1, 6, 22, 46, 118, 166, 286, 358, 526, 838, 958, 1366, 1678, 1846, 2206, 2806, 3478, 3718, 4486, 5038, 5326, 6238, 6886, 7918, 9406, 10198, 10606, 11446, 11878, 12766, 16126, 17158, 18766, 19318, 22198, 22798, 24646, 26566, 27886, 29926, 32038, 32758, 36478
Offset: 1

Views

Author

Bruno Berselli, Apr 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n)^2-3: n in [1..43]];
  • Maple
    A182200:=n->ithprime(n)^2-3; seq(A182200(k),k=1..50); # Wesley Ivan Hurt, Oct 11 2013
  • Mathematica
    Table[Prime[n]^2 - 3, {n, 43}]

Formula

a(n) = A061725(n)-5 = A066872(n)-4 = A001248(n)-3 = A084920(n)-2 = A049001(n)-1 = A166010(n)+1. [Formulas revised and extended by Bruno Berselli, Oct 15 2012]

A166011 Least common multiple of prime(n)-3 and prime(n)+3.

Original entry on oeis.org

5, 0, 8, 20, 56, 80, 140, 176, 260, 416, 476, 680, 836, 920, 1100, 1400, 1736, 1856, 2240, 2516, 2660, 3116, 3440, 3956, 4700, 5096, 5300, 5720, 5936, 6380, 8060, 8576, 9380, 9656, 11096, 11396, 12320, 13280, 13940, 14960, 16016, 16376, 18236, 18620
Offset: 1

Views

Author

Keywords

Comments

From Altug Alkan, Apr 22 2016: (Start)
For n > 1, a(n) is (p-3)*(p+3)/2 where p is the n-th prime. The reason is that the greatest common divisor of p-3 and p+3 is always 2 where p is the n-th prime and n > 2.
Proof: Let us assume that q is the greatest common divisor of p-3 and p+3. Because of the fact that any divisor of a and b must divide a-b, we know that q must divide 6. Note that q cannot be a multiple of 3 because p is prime, that is, q must be 1 or 2. Since we know that p-3 and p+3 are always even numbers for odd prime p, q must be 2 because we define it as the greatest common divisor.
If the greatest common divisor of p-3 and p+3 is always 2 where p is the n-th prime and n > 2, then the least common multiple of p-3 and p+3 must be (p-3)*(p+3)/2 where p is the n-th prime and n > 2 because of the general identity lcm(a, b) * gcd(a, b) = a*b. Note that for p = 3, (p-3)*(p+3)/t always is equal to 0 for any nonzero integer t, so it can be said that a(n) is (p-3)*(p+3)/2 where p is the n-th prime and n > 1. (End)

Crossrefs

Programs

  • Maple
    A166011:=n->lcm(ithprime(n)+3,ithprime(n)-3): seq(A166011(n), n=1..100); # Wesley Ivan Hurt, Apr 22 2016
  • Mathematica
    f[n_]:=LCM[n-3,n+3]; lst={};Do[p=Prime[n];AppendTo[lst,f[p]],{n,5!}]; lst
    LCM[#+3,#-3]&/@Prime[Range[50]] (* Harvey P. Dale, Aug 09 2015 *)
  • PARI
    a(n) = lcm(prime(n)-3, prime(n)+3); \\ Michel Marcus, Apr 22 2016
Showing 1-4 of 4 results.