cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084967 Multiples of 5 whose GCD with 6 is 1.

Original entry on oeis.org

5, 25, 35, 55, 65, 85, 95, 115, 125, 145, 155, 175, 185, 205, 215, 235, 245, 265, 275, 295, 305, 325, 335, 355, 365, 385, 395, 415, 425, 445, 455, 475, 485, 505, 515, 535, 545, 565, 575, 595, 605, 625, 635, 655, 665, 685, 695, 715, 725, 745, 755, 775, 785
Offset: 1

Views

Author

Robert G. Wilson v, Jun 15 2003

Keywords

Comments

Third row of A083140.
Positions of 5 in A020639. - Zak Seidov, Apr 29 2015

Crossrefs

Cf. A038110, A038111, A083140, A007310 (5-rough numbers), A273669.
Cf. A020639. - Zak Seidov, Apr 29 2015
Essentially the same as A063149.

Programs

  • Mathematica
    5Select[ Range[160], GCD[ #, 2*3] == 1 & ]
    Select[Range[5, 785, 10], Mod[#, 3] > 0 &] (* Zak Seidov, Apr 29 2015 *)
    a[1] = 5; a[n_] := a[n] = a[n - 1] + 10*(2 - Mod[n, 2]); Table[a[n], {n, 50}] (* Zak Seidov, Apr 29 2015 *)
  • PARI
    is(n)=n%5==0 && gcd(n,6)==1 \\ Charles R Greathouse IV, Nov 19 2014
    
  • PARI
    list(lim)=5*select(k->gcd(n,6)==1, [1..lim\5]) \\ Charles R Greathouse IV, Nov 19 2014

Formula

Numbers of the form 5k for which gcd(5k, 6) = 1.
a(n) = 5*A007310(n). - Adriano Caroli, Oct 03 2010
From Colin Barker, Feb 24 2013: (Start)
a(n) = 5*(-3 + (-1)^n + 6*n)/2.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: 5*x*(x^2+4*x+1) / ((x-1)^2*(x+1)). (End)
Limit_{n->infinity} a(n)/n = A038111(3)/A038110(3) = 15. - Vladimir Shevelev, Jan 20 2015
For n > 2, a(n) = a(n-2) + 30. - Zak Seidov, Apr 29 2015
a(n) = A007310(A273669(n)). - Antti Karttunen, May 20 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(10*sqrt(3)). - Amiram Eldar, Nov 03 2022