cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085027 a(n) = (4*n+3)*(4*n+7).

Original entry on oeis.org

21, 77, 165, 285, 437, 621, 837, 1085, 1365, 1677, 2021, 2397, 2805, 3245, 3717, 4221, 4757, 5325, 5925, 6557, 7221, 7917, 8645, 9405, 10197, 11021, 11877, 12765, 13685, 14637, 15621, 16637, 17685, 18765, 19877, 21021, 22197, 23405, 24645, 25917, 27221, 28557, 29925, 31325, 32757, 34221
Offset: 0

Views

Author

Gary W. Adamson, Jun 19 2003

Keywords

Comments

1 = 3/7 + Sum_{n>=1} 16/a(n) = 3/7 + 16/77 + 16/165 + 16/285...+...; with partial sums: 3/7, 7/11, 11/15, 15/19, 19/23, ...(4n+3)/(4n+7), ... ==> 1.
With A003185(n) = (4*n+1)*(4*n+5), a bisection of A078371(n) which is a bisection of A061037(n+2).
A quadrisection of A061037(n+2). After A002378(n), A003185(n) and A000466(n+1). - Paul Curtz, Mar 30 2011

Examples

			21 = (3)(7), 77 = (7)(11), 165 = (11)(15), 285 = (15)(19), 437 = (19)(23)...
		

Crossrefs

Programs

Formula

a(n) = 16*n^2+40*n+21. - Vincenzo Librandi, Aug 13 2011
From Colin Barker, Jul 11 2012: (Start)
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: (21+14*x-3*x^2)/(1-x)^3. (End)
E.g.f.: (21 +56*x +16*x^2)*exp(x). - G. C. Greubel, Sep 20 2018
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/12.
Sum_{n>=0} (-1)^n/a(n) = Pi/(8*sqrt(2)) + log(sqrt(2)-1)/(4*sqrt(2)) - 1/12. (End)