cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070262 5th diagonal of triangle defined in A051537.

Original entry on oeis.org

5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675, 2805, 182, 3021, 783
Offset: 1

Views

Author

Amarnath Murthy, May 09 2002

Keywords

Crossrefs

Cf. A061037. [From R. J. Mathar, Sep 29 2008]

Programs

  • Magma
    [LCM(n + 4, n)/GCD(n + 4, n): n in [1..50]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    Table[ LCM[i + 4, i] / GCD[i + 4, i], {i, 1, 60}]
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{5,3,21,2,45,15,77,6,117,35,165,12},90] (* Harvey P. Dale, Jul 13 2019 *)
  • PARI
    Vec(x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^60)) \\ Colin Barker, Mar 27 2017
    
  • PARI
    a(n) = lcm(n+4,n)/gcd(n+4,n); \\ Altug Alkan, Sep 20 2018
    

Formula

a(n) = lcm(n + 4, n) / gcd(n + 4, n).
From Colin Barker, Mar 27 2017: (Start)
G.f.: x*(5 + 3*x + 21*x^2 + 2*x^3 + 30*x^4 + 6*x^5 + 14*x^6 - 3*x^8 - x^9 - 3*x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12) for n>12. (End)
From Luce ETIENNE, May 10 2018: (Start)
a(n) = n*(n+4)*4^((5*(n mod 4)^3 - 24*(n mod 4)^2 + 31*(n mod 4)-12)/6).
a(n) = n*(n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. (End)
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 11/6.
Sum_{n>=1} (-1)^n/a(n) = 7/6.
Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End)

Extensions

Edited by Robert G. Wilson v, May 10 2002

A173039 Odd numerators of the fractions (1/4-1/n^2), n>= -2.

Original entry on oeis.org

-3, -1, -3, 5, 3, 21, 45, 15, 77, 117, 35, 165, 221, 63, 285, 357, 99, 437, 525, 143, 621, 725, 195, 837, 957, 255, 1085, 1221, 323, 1365, 1517, 399, 1677, 1845, 483, 2021, 2205, 575, 2397, 2597, 675
Offset: 1

Views

Author

Paul Curtz, Nov 21 2010

Keywords

Comments

Odd numbers in A061037, which is extended to negative n, and uses -1 to represent -1/0 at n=0. Trisections are apparently A003185, A000466 and A085027.

Formula

Conjecture: a(n)= +3*a(n-3) -3*a(n-6) +a(n-9). G.f.: ( 3+x+3*x^2-14*x^3-6*x^4-30*x^5-21*x^6-3*x^7-5*x^8 ) / ( (x-1)^3*(1+x+x^2)^3 ). - R. J. Mathar, Dec 02 2010

A241747 Triangle read by rows: T(n,k) = (4*n+3)*(4*k+3).

Original entry on oeis.org

9, 21, 49, 33, 77, 121, 45, 105, 165, 225, 57, 133, 209, 285, 361, 69, 161, 253, 345, 437, 529, 81, 189, 297, 405, 513, 621, 729, 93, 217, 341, 465, 589, 713, 837, 961, 105, 245, 385, 525, 665, 805, 945, 1085, 1225, 117, 273, 429, 585, 741, 897, 1053, 1209, 1365, 1521
Offset: 0

Views

Author

Vincenzo Librandi, Apr 29 2014

Keywords

Comments

A016838(n) first diagonal.
A085027(n) second diagonal.
A017629(n) column k=0.
Row sums give the second bisection of A002414: 9, 70, 231, 540, 1045, 1794, 2835, 4216, ... [Bruno Berselli, May 08 2014]

Examples

			Triangle begins:
n\k |   0     1     2    3    4    5     6     7     8     9
----|--------------------------------------------------------
0   |   9;
1   |  21,   49;
2   |  33,   77,  121;
3   |  45,  105,  165, 225;
4   |  57,  133,  209, 285, 361;
5   |  69,  161,  253, 345, 437, 529;
6   |  81,  189,  297, 405, 513, 621,  729;
7   |  93,  217,  341, 465, 589, 713,  837,  961;
8   | 105,  245,  385, 525, 665, 805,  945, 1085, 1225;
9   | 117,  273,  429, 585, 741, 897, 1053, 1209, 1365, 1521;
.....
		

Crossrefs

Programs

  • Magma
    [(4*n+3)*(4*k+3): k in [0..n], n in [0..15]]; /* or, as triangle: */ [[(4*n+3)*(4*k+3): k in [0..n]]: n in [0..10]];
  • Mathematica
    t[n_, k_] := (4 n + 3) (4 k + 3); Table[t[n, k], {n, 0, 10}, {k, n}] // Flatten

Extensions

Edited by Alois P. Heinz and Bruno Berselli, May 08 2014
Showing 1-3 of 3 results.