A085063 a(n) is the minimal number k such that n+k and n*k+1 are primes.
1, 1, 2, 1, 2, 1, 4, 5, 2, 1, 2, 1, 4, 3, 2, 1, 6, 1, 10, 3, 2, 1, 6, 13, 4, 3, 4, 1, 2, 1, 10, 11, 10, 3, 2, 1, 4, 5, 2, 1, 2, 1, 4, 9, 14, 1, 6, 5, 4, 3, 2, 1, 14, 5, 6, 5, 4, 1, 12, 1, 6, 5, 10, 3, 2, 1, 4, 15, 2, 1, 8, 1, 6, 27, 8, 3, 6, 1, 4, 3, 2, 1, 6, 5, 12, 11, 20, 1, 12, 7, 6, 5, 4, 3, 2, 1, 4, 5
Offset: 1
Keywords
Examples
a(3)=2 because 3+2=5 and 3*2+1=7 are prime; a(8)=5 because 8+5=13 and 8*5+1=41 are prime,
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; for k from 1+(n mod 2) by 2 do if isprime(n+k) and isprime(n*k+1) then return k fi od end proc: f(1):= 1: # Robert Israel, May 14 2018
-
Mathematica
Reap[Do[Do[If[PrimeQ[{n+x, n*x+1}]=={True,True},Sow[x];Break[]],{x,1,100}],{n,120}]][[2,1]] nkp[n_]:=Module[{k=1},While[!And@@PrimeQ[{n+k,n*k+1}],k++];k]; Array[nkp, 100] (* Harvey P. Dale, Apr 11 2012 *)
-
PARI
a(n) = {my(k=1); while (!isprime(n+k) || !isprime(n*k+1), k++); k;} \\ Michel Marcus, May 14 2018
Extensions
Corrected and extended by Zak Seidov, Jun 10 2006
Comments