cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085157 Quintuple factorials, 5-factorials, n!!!!!, n!5.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 14, 24, 36, 50, 66, 168, 312, 504, 750, 1056, 2856, 5616, 9576, 15000, 22176, 62832, 129168, 229824, 375000, 576576, 1696464, 3616704, 6664896, 11250000, 17873856, 54286848, 119351232, 226606464, 393750000, 643458816
Offset: 0

Views

Author

Hugo Pfoertner, Jun 21 2003

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used.

Examples

			a(12) = 168 because 12*a(12-5) = 12*a(7) = 12*14 = 168.
		

Crossrefs

Cf. n!:A000142, n!!:A006882, n!!!:A007661, n!!!!:A007662, n!!!!!!:A085158, 5-factorial primes: n!!!!!+1:A085148, n!!!!!-1:A085149.
Cf. A288092.

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-5);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 18 2019
    
  • Magma
    b:= func< n | (n lt 6) select n else n*Self(n-5) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    a:= n-> `if`(n < 1, 1, n*a(n-5)) end proc; seq(a(n), n = 0..40); # G. C. Greubel, Aug 18 2019
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-5]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 18 2019 *)
    Table[Times@@Range[n,1,-5],{n,0,40}] (* Harvey P. Dale, May 12 2020 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-5))
    for(n=0,50,print1(a(n),",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 19 2006
    
  • Python
    def A085157(n):
        if n <= 0:
            return 1
        else:
            return n*A085157(n-5)
    n = 0
    while n <= 40:
        print(n,A085157(n))
        n = n+1 # A.H.M. Smeets, Aug 18 2019
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-5)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = 1 for n < 1, otherwise a(n) = n*a(n-5).
Sum_{n>=0} 1/a(n) = A288092. - Amiram Eldar, Nov 10 2020

A085148 Numbers k such that k!!!!! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 11, 13, 15, 17, 23, 26, 31, 32, 35, 36, 49, 52, 89, 92, 106, 120, 141, 149, 173, 201, 280, 289, 353, 455, 483, 499, 543, 811, 866, 1010, 1126, 1557, 2358, 2411, 2435, 2485, 2491, 2772, 2851, 2937, 2996, 3642, 3777, 4123, 4642, 5566, 6416, 9202, 9382
Offset: 1

Views

Author

Hugo Pfoertner, Jun 23 2003

Keywords

Comments

The search for multifactorial primes started by Ray Ballinger is now continued by a team of volunteers on the website of Ken Davis (see link).

Crossrefs

Cf. A085157 (quintuple factorials), A085149.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(56)-a(64), with a(62)-(64) from the Ken Davis link, added to b-file by Robert Price, Sep 23 2012

A156167 Numbers n such that n![7]-1 is prime (where n![7] = A114799(n) = septuple factorial).

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 12, 14, 17, 20, 24, 30, 31, 32, 46, 52, 54, 59, 98, 104, 143, 145, 160, 174, 198, 199, 202, 212, 215, 254, 371, 382, 452, 674, 739, 959, 1249, 1657, 2291, 2553, 2650, 3562, 3727, 3853, 4389, 4604, 5449, 5659, 6026, 6878, 7900, 9564, 10150, 12444, 13321, 22642, 24014, 26598, 27430, 31386, 40707, 43328, 45811
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(65) > 50000. - Robert Price, Sep 09 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 7] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    mf(n,k=7)=prod(i=0,(n-2)\k,n-i*k)
    for( n=1,9999, ispseudoprime(mf(n)-1) & print1(n","))

Extensions

a(43)-a(64) from Robert Price, Sep 09 2012

A289758 Primes of the form k!5-1, where k!5 is the quintuple factorial number (A085157).

Original entry on oeis.org

2, 3, 5, 13, 23, 167, 311, 503, 1696463, 3616703, 119351231, 393749999, 388856692223, 35437499999999, 728640635326636031, 3885182313590882303, 19837740893195045044223, 5126863427472785697108393983, 140901732869280543971697196500573487103
Offset: 1

Views

Author

Robert Price, Jul 11 2017

Keywords

Crossrefs

Cf. A085149.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 5] - 1, {i, 2, 100}], PrimeQ[#]&]
Showing 1-4 of 4 results.