cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A085158 Sextuple factorials, 6-factorials, n!!!!!!, n!6.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 16, 27, 40, 55, 72, 91, 224, 405, 640, 935, 1296, 1729, 4480, 8505, 14080, 21505, 31104, 43225, 116480, 229635, 394240, 623645, 933120, 1339975, 3727360, 7577955, 13404160, 21827575, 33592320, 49579075, 141639680
Offset: 0

Views

Author

Hugo Pfoertner, Jun 21 2003

Keywords

Comments

The term "Sextuple factorial numbers" is also used for the sequences A008542, A008543, A011781, A047058, A047657, A049308, which have a different definition. The definition given here is the one commonly used.

Examples

			a(14) = 224 because 14*a(14-6) = 14*a(8) = 14*16 = 224.
		

Crossrefs

Cf. n!:A000142, n!!:A006882, n!!!:A007661, n!!!!:A007662, n!!!!!:A085157, 6-factorial primes: n!!!!!!+1:A085150, n!!!!!!-1:A051592.
Cf. A288093.

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-6);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 21 2019
  • Magma
    b:=func< n | n le 6 select n else n*Self(n-6) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    a:= n-> `if`(n<1, 1, n*a(n-6)); seq(a(n), n=0..40); # G. C. Greubel, Aug 21 2019
  • Mathematica
    Table[Times@@Range[n,1,-6],{n,0,40}] (* Harvey P. Dale, Aug 10 2019 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-6));
    vector(40, n, n--; a(n) ) \\ G. C. Greubel, Aug 21 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-6)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n)=1 for n < 1, otherwise a(n) = n*a(n-6).
Sum_{n>=0} 1/a(n) = A288093. - Amiram Eldar, Nov 10 2020

A204657 Numbers n such that n!10 + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 13, 19, 21, 25, 41, 57, 79, 127, 135, 149, 165, 177, 193, 209, 223, 255, 273, 287, 297, 375, 433, 459, 481, 565, 1079, 1435, 1543, 1771, 1913, 1983, 2063, 2305, 2653, 6789, 8757, 11149, 13671, 15433, 16369, 17261, 18129, 22129, 22785, 22875, 25235, 25247, 26329, 27675, 33391, 39075, 41195, 47435, 47621, 48409, 59235, 59715, 61571, 65433, 78761, 83033
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!10 = Product_{k=0..floor((n-1)/10)}(n - 10k).
a(61) > 50000. - Robert Price, Jun 10 2012
The first 11 primes associated with this sequence: 3, 3, 5, 7, 11, 13, 41, 173, 233, 1877, 293603. - Robert Price, Mar 10 2017
a(67) > 10^5. - Robert Price, Mar 31 2017

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 10] + 2] &]
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\10,n-10*i)+2)& print1(n","))

Extensions

a(40)-a(59) from Robert Price, Jun 10 2012
Inserted missing term of 6789 by Robert Price, Mar 10 2017
a(61)-a(66) from Robert Price, Mar 31 2017

A156165 Numbers k such that k![7]+1 is prime (n![7] = A114799(n) = septuple factorial).

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 10, 12, 13, 24, 25, 26, 29, 31, 35, 36, 47, 49, 57, 58, 64, 71, 73, 75, 78, 80, 97, 123, 125, 129, 131, 135, 147, 150, 159, 183, 201, 250, 251, 255, 298, 336, 337, 458, 467, 556, 570, 657, 743, 801, 908, 925, 1003, 1209, 1473, 1524, 1716, 1881, 1926
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(103) > 50000. - Robert Price, Sep 03 2012

Crossrefs

Programs

  • Mathematica
    mf[n_, k_] := Product[n - i k, {i, 0, Quotient[n - 2, k]}];
    Reap[For[k = 0, k <= 2000, k++, If[PrimeQ[mf[k, 7] + 1], Sow[k]]]][[2, 1]] (* Jean-François Alcover, Feb 26 2019 *)
    Select[Range[0,2000],PrimeQ[Times@@Range[#,1,-7]+1]&] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    mf(n,k=7)=prod(i=0,(n-2)\k,n-i*k)
    for( n=0,9999, ispseudoprime(mf(n)+1) & print1(n","))

A204659 Numbers n such that n!9-1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 15, 20, 23, 27, 30, 44, 51, 62, 80, 90, 95, 114, 129, 138, 150, 152, 156, 182, 201, 216, 293, 332, 342, 393, 411, 414, 419, 525, 668, 743, 800, 972, 1034, 1266, 1785, 1869, 2777, 3561, 3780, 4106, 4328, 4428, 4556, 4574, 4629, 5001, 5397, 6315
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!9 = A114806(n).
a(74) > 50000. - Robert Price, Jun 14 2012
a(1)-a(73) are proved prime by the deterministic test of pfgw. - Robert Price, Jun 14 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], PrimeQ[MultiFactorial[#, 9] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)-1)& print1(n","))

Extensions

a(47)-a(73) from Robert Price, Jun 14 2012
Extended b-file adding a(74)-a(81) using data from Ken Davis link by Robert Price, Apr 19 2019

A204660 Numbers n such that n!9+1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 32, 40, 43, 48, 49, 50, 57, 60, 71, 73, 82, 83, 86, 97, 105, 114, 121, 142, 147, 159, 168, 195, 205, 210, 212, 233, 262, 288, 289, 300, 309, 316, 323, 356, 403, 447, 505, 514, 553, 735, 739, 777
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!9 = A114806(n).
a(107) > 50000. - Robert Price, Jun 18 2012
a(1)-a(106) verified prime by deterministic test of PFGW. - Robert Price, Jun 18 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 9] + 1] & ] (* Robert Price, Apr 19 2019 *)
    Select[Range[0,800],PrimeQ[Times@@Range[#,1,-9]+1]&] (* Harvey P. Dale, Aug 19 2021 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)+1)& print1(n","))

A204658 Numbers n such that n!10-1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 12, 20, 40, 48, 60, 62, 70, 84, 88, 168, 240, 258, 372, 760, 932, 1010, 2110, 2464, 2490, 2702, 3180, 4744, 6024, 8858, 9060, 10322, 13382, 15778, 19322, 22372, 22928, 25344, 28050, 40604, 42282, 45884, 52428, 58250, 81220, 93612, 108650
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!10 = product( n-10k, 0 <= k < n/10 ).
See also links in A156165.
a(1)-a(40) are proved prime by deterministic tests of pfgw. - Robert Price, Jun 11 2012
a(41) > 50000. - Robert Price, Jun 11 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], PrimeQ[MultiFactorial[#, 10] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\10,n-10*i)-1)& print1(n","))

Extensions

a(26)-a(40) from Robert Price, Jun 11 2012
a(41)-a(45) from Ken Davis link entered by Robert Price, Apr 19 2019

A204661 Numbers n such that n!8+1 is prime (for n!8 see A114800).

Original entry on oeis.org

0, 1, 2, 4, 6, 28, 30, 46, 60, 72, 86, 90, 112, 154, 162, 206, 280, 354, 400, 512, 606, 614, 678, 790, 938, 1054, 1092, 1148, 1582, 1788, 2088, 2206, 2598, 2912, 3672, 4642, 6272, 6428, 7084, 7604, 8580, 9464, 12762, 18386, 24910, 30448, 31696, 40288, 41682, 45730
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
No other terms < 50000. - Robert Price, Jul 29 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 8] + 1] & ] (* Robert Price, Apr 19 2019 *)
    Select[Range[0,46000],PrimeQ[Times@@Range[#,1,-8]+1]&] (* Harvey P. Dale, Apr 12 2022 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)+1)& print1(n","))

Extensions

a(35)-a(50) from Robert Price, Jul 29 2012

A204662 Numbers n such that n!8-1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 10, 12, 14, 16, 18, 22, 28, 30, 42, 48, 58, 68, 80, 86, 92, 108, 110, 112, 130, 198, 220, 230, 322, 432, 460, 478, 686, 706, 714, 842, 950, 1010, 1090, 1314, 1904, 2264, 2804, 3164, 3324, 4740, 4824, 4918, 5086, 5442, 6994, 7898, 8236, 8684, 10088, 13990, 15320, 17570, 18218, 21564, 22198, 22684, 24314, 24780, 25790, 38726
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
No other terms < 50000. - Robert Price, Aug 15 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 8] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)-1)& print1(n","))

Extensions

a(39)-a(64) from Robert Price, Aug 15 2012

A204663 Numbers n such that n!8 + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 15, 21, 23, 27, 33, 35, 45, 53, 55, 57, 75, 79, 109, 197, 221, 227, 267, 333, 413, 545, 695, 703, 801, 967, 1029, 1329, 1351, 1475, 1549, 1757, 2173, 2861, 3161, 3167, 3885, 4681, 4965, 6277, 6655, 8477, 9821, 9959, 10269, 17999, 23349, 29347, 29477, 30181, 34133, 36687, 40985, 43395, 47499
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
See also links in A156165.
For odd k, n!k +-2 is even for all n > k and thus cannot be prime.
a(60) > 50000. - Robert Price, Aug 19 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[0,9999], PrimeQ[Product[# - 8i,{i, 0, Floor[(# - 2)/8]}] + 2] &] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)+2)& print1(n","))

Extensions

a(39)-a(59) from Robert Price, Aug 19 2012

A204664 Numbers n such that n!8-2 is prime.

Original entry on oeis.org

4, 5, 7, 9, 11, 15, 17, 25, 27, 33, 47, 59, 63, 77, 87, 89, 93, 95, 107, 119, 127, 133, 139, 193, 201, 217, 269, 291, 369, 373, 435, 445, 669, 803, 831, 859, 907, 1271, 1705, 1743, 1849, 3087, 3189, 3497, 4221, 4475, 5119, 6013, 8023, 9237, 12755, 16501, 16747, 17021, 17309, 20671, 21539, 28377, 33625, 35645, 36831, 54663, 56223, 65299, 66159, 68121, 69339, 70579, 73511, 77745, 94601
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
See also links in A156165.
For odd k, n!k +- 2 is even for all n > k and thus cannot be prime.
a(62) > 50000. - Robert Price, Aug 27 2012
The first 10 associated primes: 2, 3, 5, 7, 31, 103, 151, 3823, 16927, 126223. - Robert Price, Mar 10 2017
a(72) > 10^5. - Robert Price, Apr 24 2017

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[4, 50000], PrimeQ[MultiFactorial[#, 8] - 2] &] (* Robert Price, Mar 10 2017 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)-2)& print1(n","))

Extensions

a(46)-a(61) from Robert Price, Aug 27 2012
a(62)-a(71) from Robert Price, Apr 24 2017
Showing 1-10 of 13 results. Next