A085260 Ratio-determined insertion sequence I(0.0833344) (see the link below).
1, 12, 155, 2003, 25884, 334489, 4322473, 55857660, 721827107, 9327894731, 120540804396, 1557702562417, 20129592507025, 260127000028908, 3361521407868779, 43439651302265219, 561353945521579068
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..900
- A. Fink, R. K. Guy and M. Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math. 3 (2) (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types [local copy, corrected]
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (13,-1).
Crossrefs
Programs
-
Magma
I:=[1,12]; [n le 2 select I[n] else 13*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
Mathematica
CoefficientList[Series[(1 - x)/(1 - 13 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *) LinearRecurrence[{13,-1}, {1,12}, 30] (* G. C. Greubel, Jan 18 2018 *)
-
PARI
my(x='x+O('x^30)); Vec(x*(1-x)/(1-13*x+x^2)) \\ G. C. Greubel, Jan 18 2018
Formula
It appears that the sequence satisfies a(n+1) = 13*a(n) - a(n-1). [Corrected by M. F. Hasler, Nov 05 2018]
If the recurrence a(n+2) = 13*a(n+1) - a(n) holds then for n > 0, a(n)*a(n+3) = 143 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
G.f.: x*(1-x)/(1 - 13*x + x^2). - Philippe Deléham, Nov 17 2008
For n>1, a(n) is the numerator of the continued fraction [1,11,1,11,...,1,11] with (n-1) repetitions of 1,11. - Greg Dresden, Sep 10 2019
Comments