cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085281 Expansion of (1 - 3*x + x^2)/((1-2*x)*(1-3*x)).

Original entry on oeis.org

1, 2, 5, 13, 35, 97, 275, 793, 2315, 6817, 20195, 60073, 179195, 535537, 1602515, 4799353, 14381675, 43112257, 129271235, 387682633, 1162785755, 3487832977, 10462450355, 31385253913, 94151567435, 282446313697, 847322163875, 2541932937193, 7625731702715, 22877060890417, 68630914235795, 205892205836473
Offset: 0

Views

Author

Paul Barry, Jun 25 2003

Keywords

Comments

Binomial transform of A005578.
Binomial transform is A085282.

Crossrefs

Programs

  • Magma
    [3^n/3+2^n/2+0^n/6: n in [0..40]]; // Vincenzo Librandi, May 29 2011
    
  • Mathematica
    a[n_]:=3^n/3 + 2^n/2; Flatten[Join[{1, Array[a, 50]}]] (* or *)
    CoefficientList[Series[(1 - 3*x + x^2)/((1-2*x)*(1-3*x)), {x, 0, 50}], x] (* Stefano Spezia, Sep 09 2018 *)
    LinearRecurrence[{5,-6},{1,2,5},40] (* Harvey P. Dale, Jun 14 2022 *)
  • SageMath
    def A085281(n): return 2^(n-1) +3^(n-1) +int(n==0)/6
    [A085281(n) for n in range(41)] # G. C. Greubel, Nov 11 2024

Formula

a(n) = 3^(n-1) + 2^(n-1) + 0^n/6.
a(n) = A007689(n-1), n > 0. - R. J. Mathar, Sep 12 2008
E.g.f.: (1/6)*(1 + 3*exp(2*x) + 2*exp(3*x)). - G. C. Greubel, Nov 11 2024