cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085291 Decimal expansion of Alladi-Grinstead constant exp(c-1), where c is given in A085361.

Original entry on oeis.org

8, 0, 9, 3, 9, 4, 0, 2, 0, 5, 4, 0, 6, 3, 9, 1, 3, 0, 7, 1, 7, 9, 3, 1, 8, 8, 0, 5, 9, 4, 0, 9, 1, 3, 1, 7, 2, 1, 5, 9, 5, 3, 9, 9, 2, 4, 2, 5, 0, 0, 0, 3, 0, 4, 2, 4, 2, 0, 2, 8, 7, 1, 5, 0, 4, 2, 9, 9, 9, 0, 1, 2, 5, 1, 6, 5, 4, 7, 3, 2, 2, 3, 1, 1, 5, 1, 8, 4, 0, 7, 8, 1, 9, 7, 2, 3, 6, 1, 6, 9, 1, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

Named after the Indian-American mathematician Krishnaswami Alladi (b. 1955) and the American mathematician Charles Miller Grinstead (b. 1952). - Amiram Eldar, Jun 15 2021

Examples

			0.80939402054063913071793188059409131721595399242500030424202871504...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 120-122.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B22.

Crossrefs

Programs

  • Maple
    evalf(exp(sum((Zeta(n+1)-1)/n, n=1..infinity)-1), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    $MaxExtraPrecision = 256; RealDigits[ Exp[ Sum[ N[(-1 + Zeta[1 + n])/n, 256], {n, 350}] - 1], 10, 111][[1]] (* Robert G. Wilson v, Nov 23 2005 *)
  • PARI
    exp(suminf(n=1, (zeta(n+1)-1)/n) - 1) \\ Michel Marcus, May 19 2020

Formula

Equals exp(c-1), where c is Sum_{n>=1} (zeta(n+1) - 1)/n (cf. A085361).
Equals lim_{n->oo} (Product_{k=1..n} (k/n)*floor(n/k))^(1/n). - Benoit Cloitre, Jul 15 2022

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 24 2003