A085357 Common residues of binomial(3n,n)/(2n+1) modulo 2: relates ternary trees (A001764) to the infinite Fibonacci word (A003849).
1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- J.-P. Allouche, F. v. Haeseler, H.-O. Peitgen, A. Petersen and G. Skordev, Automaticity of double sequences generated by one-dimensional linear cellular automata, Theoret. Comput. Sci. 186 (1997), 195-209.
- J.-P. Allouche, F. v. Haeseler, H.-O. Peitgen and G. Skordev, Linear cellular automata, finite automata and Pascal's triangle, Discrete Appl. Math. 66 (1996), 1-22.
- R. Bacher and C. Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.
- Paul Tarau, Emulating Primality with Multiset Representations of Natural Numbers, in Theoretical Aspects of Computing, ICTAC 2011, Lecture Notes in Computer Science, 2011, Volume 6916/2011, 218-238, DOI: 10.1007/978-3-642-23283-1_15.
- Index entries for characteristic functions
- Index entries for sequences computed with run length transform
Crossrefs
Programs
-
Magma
[Binomial(3*n,n) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 09 2016
-
Maple
f:= proc(n) local L,Lp; L:= convert(n,base,2); Lp:= convert(3*n,base,2); if has(L-Lp[1..nops(L)],1) then 0 else 1 fi end proc: map(f, [$0..100]); # Robert Israel, Jul 12 2016
-
Mathematica
Table[Mod[Binomial[3 n, n], 2], {n, 0, 120}] (* Michael De Vlieger, Jul 08 2016 *)
-
PARI
A085357(n) = !bitand(n,n<<1); \\ Antti Karttunen, Aug 22 2019
-
Python
def A085357(n): return int(not n&(n<<1)) # Chai Wah Wu, Jun 25 2025
Formula
G.f.: 1 + x*A(x)^3 = A(x) (Mod 2); a(n) = A001764(n) (Mod 2).
a(n) = binomial(3n, n) (mod 2). Characteristic function of Fibbinary numbers (i.e. a(n)=1 iff n is in A003714). - Benoit Cloitre, Nov 15 2003
Recurrence: a(0) = 1, a(2n) = a(4n+1) = a(n), a(4n+3) = 0.
a(n-2) = A000256(n)(mod 2), for n>2. - John M. Campbell, Jul 08 2016
a(n) = A000621(n+1)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A000625(n)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A008966(A005940(1+n)). [Follows from the Run Length Transform interpretation, see also A277010.] - Antti Karttunen, Oct 15 2016
Comments