A085442 a(n) = Sum_{i=1..n} binomial(i+1,2)^7.
1, 2188, 282124, 10282124, 181141499, 1982230040, 15475158552, 93839322648, 467508775773, 1989944010148, 7445104711204, 25010673566116, 76686775501847, 217396817767472, 575714897767472, 1436257466526768, 3398894618986905, 7674255436599996, 16612972826599996
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
Crossrefs
Programs
-
Magma
[(1/823680) *n*(n+1)*(n+2)*(429*n^12 +5148*n^11 +24123*n^10 +52470*n^9 +43047*n^8 -8856*n^7 +4109*n^6 +50430*n^5 -18796*n^4 -44472*n^3 +26864*n^2 +8352*n -5568): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Mathematica
Table[Sum[Binomial[k+1,2]^7, {k,1,n}], {n,1,30}] (* G. C. Greubel, Nov 22 2017 *) LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1,2188,282124,10282124,181141499,1982230040,15475158552,93839322648,467508775773,1989944010148,7445104711204,25010673566116,76686775501847,217396817767472,575714897767472,1436257466526768},20] (* Harvey P. Dale, May 11 2022 *)
-
PARI
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^7), ", ")) \\ G. C. Greubel, Nov 22 2017
Formula
a(n) = (1/823680) *n*(n+1)*(n+2)*(429*n^12 +5148*n^11 +24123*n^10 +52470*n^9 +43047*n^8 -8856*n^7 +4109*n^6 +50430*n^5 -18796*n^4 -44472*n^3 +26864*n^2 +8352*n -5568). - Vladeta Jovovic, Jul 07 2003
G.f.: x*(x^12 +2172*x^11 +247236*x^10 +6030140*x^9 +49258935*x^8 +163809288*x^7 +242384856*x^6 +163809288*x^5 +49258935*x^4 +6030140*x^3 +247236*x^2 +2172*x+ 1) / (x -1)^16. - Colin Barker, May 02 2014