A085461 Number of 5-tuples (v1,v2,v3,v4,v5) of nonnegative integers less than n such that v1 <= v5, v2 <= v5, v2 <= v4 and v3 <= v4.
1, 13, 70, 246, 671, 1547, 3164, 5916, 10317, 17017, 26818, 40690, 59787, 85463, 119288, 163064, 218841, 288933, 375934, 482734, 612535, 768867, 955604, 1176980, 1437605, 1742481, 2097018, 2507050, 2978851, 3519151, 4135152, 4834544
Offset: 1
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 168).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Daeseok Lee and H.-K. Ju, An Extension of Hibi's palindromic theorem, arXiv preprint arXiv:1503.05658 [math.CO], 2015.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- See p. 31
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
Rest[CoefficientList[Series[x*(1 + x)*(1 + 6*x + x^2)/(1 - x)^6, {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *)
-
PARI
x='x+O('x^50); Vec(x*(1+x)*(1+6*x+x^2)/(1-x)^6) \\ G. C. Greubel, Oct 06 2017
Formula
a(n) = n + 11*binomial(n, 2) + 34*binomial(n, 3) + 40*binomial(n, 4) + 16*binomial(n, 5) = 1/30*n*(n+1)*(2*n+1)*(2*n^2 + 2*n + 1).
From Bruno Berselli, Dec 27 2010: (Start)
G.f.: x*(1+x)*(1+6*x+x^2)/(1-x)^6.
Comments