cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006858 Expansion of g.f. x*(1 + x)*(1 + 6*x + x^2)/(1 - x)^7.

Original entry on oeis.org

0, 1, 14, 84, 330, 1001, 2548, 5712, 11628, 21945, 38962, 65780, 106470, 166257, 251720, 371008, 534072, 752913, 1041846, 1417780, 1900514, 2513049, 3281916, 4237520, 5414500, 6852105, 8594586, 10691604, 13198654, 16177505, 19696656, 23831808, 28666352, 34291873
Offset: 0

Views

Author

Keywords

Comments

Arises in enumerating paths in the plane.
a(n+1) is the determinant of the n X n Hankel matrix whose first row is the Catalan numbers C_n (A000108) beginning at C_4 = 14. Example (n=3): det[{{14, 42, 132}, {42, 132, 429}, {132, 429, 1430}}] = 330. - David Callan, Mar 30 2007
0 together with partial sums of A085461. - Arkadiusz Wesolowski, Aug 05 2012

Examples

			G.f. = x + 14*x^2 + 84*x^3 + 330*x^4 + 1001*x^5 + 2548*x^6 + 5712*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Volume 1, 1986, p. 221, Example 4.5.18.

Crossrefs

Programs

  • Maple
    series((x+7*x^2+7*x^3+x^4)/(1-x)^7,x,50);
    b:=binomial; t72b:= proc(a,k) ((a+k+1)/(a+1)) * b(k+2*a+1,k)*b(k+3*a/2+1,k)/(b(k+a/2,k)); end; [seq(t72b(1,k),k=0..40)];
  • Mathematica
    a[n_]:= (n+1)*Binomial[2n+4, 5]/12;
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 17 2017, after Philippe Deléham *)
  • PARI
    a(n) = (n+1)*binomial(2*n+4, 5)/12; \\ Michel Marcus, Oct 13 2016
    
  • Sage
    [(n+1)*binomial(2*n+4, 5)/12 for n in (0..30)] # G. C. Greubel, Dec 14 2021

Formula

a(n) = (n+1)*binomial(2*n+4, 5)/12. - Philippe Deléham, Mar 06 2004
a(n) = a(-2-n) for all n in Z. - Michael Somos, Jun 27 2023
From Amiram Eldar, Jul 09 2023: (Start)
Sum_{n>=1} 1/a(n) = 30*Pi^2 - 295.
Sum_{n>=1} (-1)^(n+1)/a(n) = -15*Pi^2 + 240*Pi - 605. (End)
E.g.f.: exp(x)*x*(180 + 1080*x + 1350*x^2 + 555*x^3 + 84*x^4 + 4*x^5)/180. - Stefano Spezia, Dec 09 2023

Extensions

Edited by N. J. A. Sloane, Oct 20 2007

A085465 Number of monotone n-weightings of complete bipartite digraph K(3,3).

Original entry on oeis.org

1, 15, 102, 442, 1443, 3885, 9100, 19188, 37269, 67771, 116754, 192270, 304759, 467481, 696984, 1013608, 1442025, 2011815, 2758078, 3722082, 4951947, 6503365, 8440356, 10836060, 13773565, 17346771, 21661290, 26835382, 33000927, 40304433
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jul 01 2003

Keywords

Comments

A monotone n-(vertex) weighting of a digraph D=(V,E) is a function w: V -> {0,1,..,n-1} such that w(v1)<=w(v2) for every arc (v1,v2) from E.
a(n) = number of proper mergings of a 3-antichain and an (n-1)-chain. - Henri Mühle, Aug 17 2012

Crossrefs

Programs

  • Magma
    [1/20*n*(n+1)*(n^2+1)*(n^2+2*n+2): n in [1..40]]; // Vincenzo Librandi, Oct 06 2017
  • Mathematica
    Rest[CoefficientList[Series[x*(1 + 4*x + x^2)^2/(1 - x)^7, {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 15, 102, 442, 1443, 3885, 9100}, 40] (* Vincenzo Librandi, Oct 06 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(1+4*x+x^2)^2/(1-x)^7) \\ G. C. Greubel, Oct 06 2017
    

Formula

a(n) = n + 13*binomial(n, 2) + 60*binomial(n, 3) + 120*binomial(n, 4) + 108*binomial(n, 5) + 36*binomial(n, 6) = 1/20*n*(n+1)*(n^2+1)*(n^2+2*n+2) = Sum_{i=1..n} ((n+1-i)^3-(n-i)^3)*i^3. More generally, number of monotone n-weightings of complete bipartite digraph K(s, t) is Sum_{i=1..n} ((n+1-i)^s-(n-i)^s)*i^t = Sum_{i=1..n} ((n+1-i)^t-(n-i)^t)*i^s.
G.f.: x*(1+4*x+x^2)^2/(1-x)^7. - Colin Barker, Apr 01 2012
a(n) = A006003(n)*A006003(n+1)/5 for n>0. - Bruno Berselli, Jun 26 2018

A110450 a(n) = n*(n+1)*(n^2+n+1)/2.

Original entry on oeis.org

0, 3, 21, 78, 210, 465, 903, 1596, 2628, 4095, 6105, 8778, 12246, 16653, 22155, 28920, 37128, 46971, 58653, 72390, 88410, 106953, 128271, 152628, 180300, 211575, 246753, 286146, 330078, 378885, 432915, 492528, 558096, 630003, 708645, 794430
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2005

Keywords

Comments

This sequence is related to A085461 by 3*A085461(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n>0. - Bruno Berselli, Dec 27 2010
Subsequence of the triangular numbers A000217, see formulas below. - David James Sycamore, Jul 31 2018

Crossrefs

Programs

  • GAP
    List([0..40],n->n*(n+1)*(n^2+n+1)/2); # Muniru A Asiru, Aug 02 2018
  • Magma
    [n*(n+1)*(n^2+n+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
    
  • Maple
    A110450:=n->n*(n+1)*(n^2+n+1)/2; seq(A110450(k), k=0..50); # Wesley Ivan Hurt, Sep 27 2013
  • Mathematica
    Table[n (n + 1) (n^2 + n + 1)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
    CoefficientList[Series[-3 x (x^2 + 2 x + 1)/(x - 1)^5, {x, 0, 36}], x] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 21, 78, 210}, 36] (* Robert G. Wilson v, Jul 31 2018 *)
  • PARI
    a(n)=n*(n+1)*(n^2+n+1)/2 \\ Charles R Greathouse IV, Oct 16 2015
    

Formula

a(n) = Sum_{k=0..n} A110449(n,k), sums of rows in triangle A110449.
From Bruno Berselli, Dec 27 2010: (Start)
G.f.: 3*x*(1 + x)^2/(1 - x)^5.
a(n) = A014105(A000217(n)). (End)
a(n) = Sum_{i=1..n*(n+1)} i. - Wesley Ivan Hurt, Sep 27 2013
a(n) = Sum_{i=0..n} i*(2*i^2+1), and these are the partial sums of A061317. - Bruno Berselli, Feb 09 2017
a(n) = t(n,t(n,A000217(n))), where t(n,k) = n*(n+1)/2 + k*n and k=0. - Bruno Berselli, Feb 28 2017
E.g.f.: (x/2)*(6 + 15*x + 8*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 24 2017
a(n) = A000217(n*(n+1)). - David James Sycamore, Jul 31 2018
a(n) = A000217(2*A000217(n)) = A000217(A002378(n)). - Alois P. Heinz, Jul 31 2018
From R. J. Mathar, Mar 23 2021: (Start)
a(n) = A002378(n)+A062392(n).
a(n) = 3*A006325(n+1). (End)
Sum_{n>=1} 1/a(n) = 4 - 2*Pi*tanh(sqrt(3)*Pi/2)/sqrt(3). - Amiram Eldar, May 10 2025

A085462 Number of 5-tuples (v1,v2,v3,v4,v5) of nonnegative integers less than n such that v1<=v4, v1<=v5, v2<=v4 and v3<=v4.

Original entry on oeis.org

1, 14, 77, 273, 748, 1729, 3542, 6630, 11571, 19096, 30107, 45695, 67158, 96019, 134044, 183260, 245973, 324786, 422617, 542717, 688688, 864501, 1074514, 1323490, 1616615, 1959516, 2358279, 2819467, 3350138, 3957863, 4650744
Offset: 1

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jul 01 2003

Keywords

Comments

Number of monotone n-weightings of a certain connected bipartite digraph. A monotone n-(vertex) weighting of a digraph D=(V,E) is a function w: V -> {0,1,..,n-1} such that w(v1)<=w(v2) for every arc (v1,v2) from E.
Dimensions of certain Lie algebra (see Landsberg-Manivel reference for precise definition). - N. J. A. Sloane, Oct 15 2007

Crossrefs

Programs

  • Magma
    [n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120: n in [0..50]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Rest[CoefficientList[Series[x*(1 + x)*(1 + 7*x + x^2)/(1 - x)^6, {x, 0, 50}], x]] (* or *) Table[n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120, {n,0,50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(1+x)*(1+7*x+x^2)/(1-x)^6) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = n + 12*binomial(n, 2) + 38*binomial(n, 3) + 45*binomial(n, 4) + 18*binomial(n, 5).
a(n) = n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120.
G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^6. - Colin Barker, Apr 01 2012
a(n) = sum(i=1..n, sum(j=1..n, i^2 * Min(i,j))). - Enrique Pérez Herrero, Jan 30 2013

A085463 Number of 5-tuples (v1,v2,v3,v4,v5) of nonnegative integers less than n such that v1<=v4, v1<=v5, v2<=v4, v2<=v5 and v3<=v4.

Original entry on oeis.org

1, 12, 63, 219, 594, 1365, 2786, 5202, 9063, 14938, 23529, 35685, 52416, 74907, 104532, 142868, 191709, 253080, 329251, 422751, 536382, 673233, 836694, 1030470, 1258595, 1525446, 1835757, 2194633, 2607564, 3080439, 3619560, 4231656
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jul 01 2003

Keywords

Comments

Number of monotone n-weightings of a certain connected bipartite digraph. A monotone n-(vertex) weighting of a digraph D=(V,E) is a function w: V -> {0,1,..,n-1} such that w(v1)<=w(v2) for every arc (v1,v2) from E.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120: n in [1..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120, {n,1,25}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=1,25, print1(n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = n + 10*binomial(n, 2) + 30*binomial(n, 3) + 35*binomial(n, 4) + 14*binomial(n, 5).
a(n) = n*(n+1)*(2*n+1)*(7*n^2 + 7*n + 6)/120.
G.f.: x*(1+6*x+6*x^2+x^3)/(1-x)^6. - Colin Barker, Apr 01 2012

A085464 Number of monotone n-weightings of complete bipartite digraph K(4,2).

Original entry on oeis.org

1, 19, 134, 586, 1919, 5173, 12124, 25572, 49677, 90343, 155650, 256334, 406315, 623273, 929272, 1351432, 1922649, 2682363, 3677374, 4962706, 6602519, 8671069, 11253716, 14447980, 18364645, 23128911, 28881594, 35780374, 44001091
Offset: 1

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jul 01 2003

Keywords

Comments

A monotone n-(vertex) weighting of a digraph D=(V,E) is a function w: V -> {0,1,..,n-1} such that w(v1)<=w(v2) for every arc (v1,v2) from E.

Crossrefs

Programs

  • Magma
    [(1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1): n in [1..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1), {n,1,50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    a(n)=n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1)/30 \\ Charles R Greathouse IV, Jan 16 2013
    

Formula

a(n) = n + 17*binomial(n, 2) + 80*binomial(n, 3) + 160*binomial(n, 4) + 144*binomial(n, 5) + 48*binomial(n, 6).
a(n) = (1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1).
a(n) = Sum_{i=1..n} ((n+1-i)^4-(n-i)^4)*i^2.
a(n) = Sum_{i=1..n} ((n+1-i)^2-(n-i)^2)*i^4.
More generally, number of monotone n-weightings of complete bipartite digraph K(s, t) is Sum_{i=1..n} ((n+1-i)^s-(n-i)^s)*i^t = Sum_{i=1..n} ((n+1-i)^t-(n-i)^t)*i^s.
G.f.: x*(1+x)^2*(1+10*x+x^2)/(1-x)^7. - Colin Barker, Apr 01 2012
a(n) = sum(i=1..n, sum (j=1..n, min(i,j)^4)). - Enrique Pérez Herrero, Jan 16 2013

A373424 Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jun 09 2024

Keywords

Comments

A variant of both A050446 and A050447 which are the main entries. Differs in indexing and adds a first row to the array resp. a diagonal to the triangle.

Examples

			Generating functions of the rows:
   gf0 =  1;
   gf1 = -1/( x-1);
   gf2 =  1/(-x-1/(-x-1));
   gf3 = -1/( x-1/( x-1/( x-1)));
   gf4 =  1/(-x-1/(-x-1/(-x-1/(-x-1))));
   gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1)))));
   gf6 =  1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1))))));
   ...
Array A(n, k) starts:
  [0] 1, 0,  0,  0,   0,    0,    0,     0,      0,      0, ...  A000007
  [1] 1, 1,  1,  1,   1,    1,    1,     1,      1,      1, ...  A000012
  [2] 1, 2,  3,  5,   8,   13,   21,    34,     55,     89, ...  A000045
  [3] 1, 3,  6, 14,  31,   70,  157,   353,    793,   1782, ...  A006356
  [4] 1, 4, 10, 30,  85,  246,  707,  2037,   5864,  16886, ...  A006357
  [5] 1, 5, 15, 55, 190,  671, 2353,  8272,  29056, 102091, ...  A006358
  [6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ...  A006359
   A000027,A000330,   A085461,     A244881, ...
       A000217, A006322,    A108675, ...
.
Triangle T(n, k) = A(n - k, k) starts:
  [0] 1;
  [1] 1,  0;
  [2] 1,  1,  0;
  [3] 1,  2,  1,  0;
  [4] 1,  3,  3,  1,  0;
  [5] 1,  4,  6,  5,  1,  0;
  [6] 1,  5, 10, 14,  8,  1, 0;
		

Crossrefs

Cf. A050446, A050447, A276313 (main diagonal), A373353 (row sums of triangle).
Cf. A373423.

Programs

  • Maple
    row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then
    a :=  x - 1; for j from 1 to n do a :=  x - 1 / a od: a :=  a - x; else
    a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x;
    fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
    A := (n, k) -> row(n, 12)[k+1]:      # array form
    T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
  • SageMath
    def Arow(n, len):
        R. = PowerSeriesRing(ZZ, len)
        if n == 0: return [1] + [0]*(len - 1)
        x = -x if n % 2 else x
        a = x + 1
        for _ in range(n):
            a = x - 1 / a
        a = x - a if n % 2 else a - x
        return a.list()
    for n in range(7): print(Arow(n, 10))

A373423 Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(0) = 1, cf(1) = -1/(x - 1), and for n > 1 is cf(n) = ~( ~x - 1/(~x - 1/(~x - 1/(~x - 1/(~x - ... 1/(~x + 1))))...) ) where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 1, 0, 1, 4, 3, 1, 1, 0, 1, 5, 6, 5, 1, 1, 0, 1, 6, 10, 14, 8, 1, 1, 0, 1, 7, 15, 30, 31, 13, 1, 1, 0, 1, 8, 21, 55, 85, 70, 21, 1, 1, 0, 1, 9, 28, 91, 190, 246, 157, 34, 1, 1, 0, 1, 10, 36, 140, 371, 671, 707, 353, 55, 1, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jun 09 2024

Keywords

Examples

			Generating functions of row n:
   gf0 = 1;
   gf1 =   - 1/( x-1);
   gf2 = x + 1/(-x+1);
   gf3 = x - 1/( x-1/( x+1));
   gf4 = x + 1/(-x-1/(-x-1/(-x+1)));
   gf5 = x - 1/( x-1/( x-1/( x-1/( x+1))));
   gf6 = x + 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x+1)))));
.
Array begins:
  [0] 1, 0,  0,   0,   0,    0,     0,     0,      0, ...
  [1] 1, 1,  1,   1,   1,    1,     1,     1,      1, ...
  [2] 1, 2,  1,   1,   1,    1,     1,     1,      1, ...  A373565
  [3] 1, 3,  3,   5,   8,   13,    21,    34,     55, ...  A373566
  [4] 1, 4,  6,  14,  31,   70,   157,   353,    793, ...  A373567
  [5] 1, 5, 10,  30,  85,  246,   707,  2037,   5864, ...  A373568
  [6] 1, 6, 15,  55, 190,  671,  2353,  8272,  29056, ...  A373569
       A000217,  A006322,     A108675, ...
            A000330,   A085461,      A244881, ...
.
Triangle starts:
  [0] 1;
  [1] 1, 0;
  [2] 1, 1,  0;
  [3] 1, 2,  1,  0;
  [4] 1, 3,  1,  1,  0;
  [5] 1, 4,  3,  1,  1,  0;
  [6] 1, 5,  6,  5,  1,  1, 0;
		

Crossrefs

Cf. A373424, A276312 (main diagonal).
Columns include: A000217, A000330, A006322, A085461, A108675, A244881.

Programs

  • Maple
    row := proc(n, len) local x, a, j, ser;
    if n = 0 then a := -1 elif n = 1 then a := -1/(x - 1) elif irem(n, 2) = 1 then
      a :=  x + 1; for j from 1 to n-1 do a :=  x - 1 / a od: else
      a := -x + 1; for j from 1 to n-1 do a := -x - 1 / a od: fi;
    ser := series((-1)^(n-1)*a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
    A := (n, k) -> row(n, 12)[k+1]:      # array form
    T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
    seq(lprint([n], row(n, 9)), n = 0..9);
  • SageMath
    def Arow(n, len):
        R. = PowerSeriesRing(ZZ, len)
        if n == 0: return [1] + [0]*(len - 1)
        if n == 1: return [1]*(len - 1)
        x = x if n % 2 == 1 else -x
        a = x + 1
        for _ in range(n - 1):
            a = x - 1 / a
        if n % 2 == 0: a = -a
        return a.list()
    for n in range(8): print(Arow(n, 9))
Showing 1-8 of 8 results.