A079547 a(n) = ((n^6 - (n-1)^6) - (n^2 - (n-1)^2))/60.
0, 1, 11, 56, 192, 517, 1183, 2408, 4488, 7809, 12859, 20240, 30680, 45045, 64351, 89776, 122672, 164577, 217227, 282568, 362768, 460229, 577599, 717784, 883960, 1079585, 1308411
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([1..30], n-> n*(6*n^4-15*n^3+20*n^2-15*n+4)/60) # G. C. Greubel, Jun 19 2019
-
Magma
[n*(6*n^4-15*n^3+20*n^2-15*n+4)/60: n in [1..30]]; // G. C. Greubel, Jun 19 2019
-
Mathematica
Table[((n^6 -(n-1)^6) - (n^2 -(n-1)^2))/60, {n, 30}] (* Bruno Berselli, Feb 13 2012 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,11,56,192,517},30] (* Harvey P. Dale, Feb 21 2023 *)
-
PARI
a(n) = n*(6*n^4-15*n^3+20*n^2-15*n+4)/60 \\ Charles R Greathouse IV, Jan 16 2013
-
Sage
[n*(6*n^4-15*n^3+20*n^2-15*n+4)/60 for n in (1..30)] # G. C. Greubel, Jun 19 2019
Formula
a(n+1) = Sum_{i=1..n} (i^2 + i^4)/2 = n*(2*n+1)*(n+1)*(3*n^2+3*n+4)/60. - Vladeta Jovovic, Mar 17 2006
G.f.: x^2*(x+1)*(1+4*x+x^2)/(1-x)^6. - Bruno Berselli, Feb 13 2012
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} min(i,j)^3. - Enrique Pérez Herrero, Jan 16 2013
E.g.f.: x^2*(30 + 80*x + 45*x^2 + 6*x^3)*exp(x)/60. - G. C. Greubel, Jun 19 2019
Comments