A062392 a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.
0, 1, 15, 66, 190, 435, 861, 1540, 2556, 4005, 5995, 8646, 12090, 16471, 21945, 28680, 36856, 46665, 58311, 72010, 87990, 106491, 127765, 152076, 179700, 210925, 246051, 285390, 329266, 378015, 431985, 491536, 557040, 628881, 707455, 793170, 886446, 987715
Offset: 0
Examples
From _Bruno Berselli_, Oct 30 2017: (Start) After 0: 1 = -(1) + (2); 15 = -(1 + 2) + (3 + 4 + 5 + 2*3); 66 = -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4); 190 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5); 435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
References
- T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Maple
a := n -> (2*n^2+n^3-1)*n/2; # Peter Luschny, Jul 12 2009
-
Mathematica
Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* Harvey P. Dale, Oct 19 2011 *)
-
PARI
{ a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ Harry J. Smith, Aug 07 2009
Formula
a(n) = n*(n+1)*(n^2 + n - 1)/2 = n^4 - a(n-1) = A000583(n) - a(n-1) = A000217(A028387(n-1)) = A000217(n)*A028387(n-1).
a(n) = Sum_{i=0..n} A007588(i) for n > 0. - Jonathan Vos Post, Mar 15 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Oct 19 2011
G.f.: x*(x*(x + 10) + 1)/(1 - x)^5. - Harvey P. Dale, Oct 19 2011
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*2*Pi/sqrt(5). - Amiram Eldar, Jan 22 2024
a(n) = sqrt(144*A288876(n-2) + 72*A006542(n+2) + A000537(n)). - Yasser Arath Chavez Reyes, Jul 22 2024
E.g.f.: exp(x)*x*(2 + 13*x + 8*x^2 + x^3)/2. - Stefano Spezia, Apr 27 2025
Comments