cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085487 a(n) = p^n + q^n, p = (1 + sqrt(21))/2, q = (1 - sqrt(21))/2.

Original entry on oeis.org

1, 11, 16, 71, 151, 506, 1261, 3791, 10096, 29051, 79531, 224786, 622441, 1746371, 4858576, 13590431, 37883311, 105835466, 295252021, 824429351, 2300689456, 6422836211, 17926283491, 50040464546, 139671882001, 389874204731, 1088233614736
Offset: 1

Views

Author

Gary W. Adamson, Jul 02 2003

Keywords

Comments

p + q = 1, p*q = -5, p - q = sqrt(21).
The Lucas sequence V(1,-5) apart from the initial term a(0) = 2. - Peter Bala, Jun 23 2015

Examples

			a(5) = 151 = p^5 + q^5, with p = 2.79128...; q = -1.79128...
		

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471.

Crossrefs

Cf. A015440.

Programs

  • Magma
    I:=[ 1,11]; [n le 2 select I[n] else Self(n-1)+5*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
  • Mathematica
    CoefficientList[Series[(10 x + 1) / (1 - x - 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
  • Maxima
    a(n):=n*sum((binomial(k,n-k)*1^(2*k-n)*(5)^(n-k))/k,k,1,n); /* Dmitry Kruchinin, May 16 2011 */
    
  • Sage
    [lucas_number2(n,1,-5) for n in range(1, 11)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (10*x^2+x)/(1-x-5*x^2).
a(n) = n*sum(k=1..n, (C(k,n-k)*1^(2*k-n)*(5)^(n-k))/k). - Dmitry Kruchinin, May 16 2011
a(n) = a(n-1) + 5a(n-2), n>1.
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 21*x^2))/2 )^n. - Peter Bala, Jun 23 2015