cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060238 a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).

Original entry on oeis.org

1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
Offset: 0

Views

Author

MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001

Keywords

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
  • J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.

Crossrefs

Programs

Formula

For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = A000142(n) * A085542(n). - Enrique Pérez Herrero, Jun 08 2010
a(n) = A001088(n) * A048803(n) * (-1)^A013939(n). - Amiram Eldar, Dec 19 2018
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2023

A239682 Product_{i=1..n} A173557(i).

Original entry on oeis.org

1, 1, 2, 2, 8, 16, 96, 96, 192, 768, 7680, 15360, 184320, 1105920, 8847360, 8847360, 141557760, 283115520, 5096079360, 20384317440, 244611809280, 2446118092800, 53814598041600, 107629196083200, 430516784332800, 5166201411993600, 10332402823987200
Offset: 1

Views

Author

Tom Edgar, Mar 24 2014

Keywords

Comments

This is the generalized factorial for A173557.

Examples

			The first five terms of A173557 are 1,1,2,1,4 so a(5)=4*1*2*1*1=8.
		

Crossrefs

Programs

  • Sage
    q=50 # change q for more terms
    R=[prod([(x-1) for x in prime_divisors(n)]) for n in [1..q]]
    [prod(R[0:i+1]) for i in [0..q-1]]

Formula

Product_{i=1..n} A173557(i).
a(n) = abs(A085542(n)).
Showing 1-2 of 2 results.