A085750 Determinant of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.
0, -1, 4, -12, 32, -80, 192, -448, 1024, -2304, 5120, -11264, 24576, -53248, 114688, -245760, 524288, -1114112, 2359296, -4980736, 10485760, -22020096, 46137344, -96468992, 201326592, -419430400, 872415232, -1811939328, 3758096384, -7784628224, 16106127360
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Emmanuel Briand, Luis Esquivias, Álvaro Gutiérrez, Adrián Lillo, and Mercedes Rosas, Determinant of the distance matrix of a tree, Proceedings of the 36th Conference on Formal Power Series and Algebraic Combinatorics (Bochum), Séminaire Lotharingien de Combinatoire 91B (2024) Article #29, 12 pp.
- R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Tech. J., 50, 1971, 2495-2519.
- Tanya Khovanova, Recursive Sequences
- R. Merris, The distance spectrum of a tree, J. Graph Theory, 14, No. 3, 1990,365-369.
- Index entries for linear recurrences with constant coefficients, signature (-4,-4).
Crossrefs
Programs
-
Maple
seq((-1)^(n-1)*(n-1)*2^(n-2), n = 1 .. 31);
-
Mathematica
Table[-(-1)^n*2^(n - 2)*(n - 1), {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *) LinearRecurrence[{-4,-4},{0,-1},40] (* Harvey P. Dale, Apr 14 2014 *) CoefficientList[Series[-x/(1 + 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 15 2014 *)
-
PARI
a(n) = (-1)^n*(1-n)<<(n-2) \\ Charles R Greathouse IV, Sep 30 2022
Formula
a(n) = (-1)^(n+1) * (n-1) * 2^(n-2) = (-1)^(n+1) * A001787(n-1).
G.f.: -x/(1+2x)^2. - Paul Barry, Jan 11 2007
a(n) = -4*a(n-1) - 4*a(n-2); a(1) = 0, a(1) = -1. - Philippe Deléham, Nov 03 2008
E.g.f.: -x*exp(-2*x). - Stefano Spezia, Sep 30 2022
Extensions
More terms from Philippe Deléham, Nov 16 2008
Comments