A085780 Numbers that are a product of 2 triangular numbers.
0, 1, 3, 6, 9, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 225, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 441
Offset: 1
Keywords
Examples
18 = 3*6 = t(2)*t(3) is a product of two triangular numbers and therefore in the sequence.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
isA085780 := proc(n) local d; for d in numtheory[divisors](n) do if d^2 > n then return false; end if; if isA000217(d) then if isA000217(n/d) then return true; end if; end if; end do: return false; end proc: for n from 1 to 1000 do if isA085780(n) then printf("%d,",n) ; end if ; end do: # R. J. Mathar, Nov 29 2015
-
Mathematica
t1 = Table[n (n+1)/2, {n, 0, 100}];Select[Union[Flatten[Outer[Times, t1, t1]]], # <= t1[[-1]] &] (* T. D. Noe, Jun 04 2012 *)
-
PARI
A003056(n)=(sqrtint(8*n+1)-1)\2 list(lim)=my(v=List([0]),t); for(a=1, A003056(lim\1), t=a*(a+1)/2; for(b=a, A003056(lim\t), listput(v,t*b*(b+1)/2))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 26 2013
-
Python
from itertools import count, islice from sympy import divisors, integer_nthroot def A085780_gen(startvalue=0): # generator of terms if startvalue <= 0: yield 0 for n in count(max(startvalue,1)): for d in divisors(m:=n<<2): if d**2 > m: break if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]: yield n break A085780_list = list(islice(A085780_gen(),10)) # Chai Wah Wu, Aug 28 2022
Formula
Conjecture: There are about sqrt(x)*log(x) terms up to x. - Charles R Greathouse IV, Jul 11 2024
Extensions
More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009
Comments