A085789 Partial sums of n 3-spaced triangular numbers beginning with t(2), e.g., a(2) = t(2) + t(5) = 3 + 15 = 18.
3, 18, 54, 120, 225, 378, 588, 864, 1215, 1650, 2178, 2808, 3549, 4410, 5400, 6528, 7803, 9234, 10830, 12600, 14553, 16698, 19044, 21600, 24375, 27378, 30618, 34104, 37845, 41850, 46128, 50688, 55539, 60690, 66150, 71928, 78033, 84474, 91260, 98400, 105903
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[3/2*n^2*(n+1): n in [1..40]]; // Vincenzo Librandi, Aug 14 2017
-
Mathematica
CoefficientList[Series[3 (1 + 2 x) / (1 - x)^4, {x, 0, 40}], x](* Vincenzo Librandi, Aug 14 2017 *) LinearRecurrence[{4,-6,4,-1},{3,18,54,120},50] (* Harvey P. Dale, May 14 2023 *)
Formula
a(n) = 3/2 * n^2*(n+1).
G.f.: 3*(x + 2*x^2)/(1 - x)^4. - Arkadiusz Wesolowski, Feb 11 2012
From Amiram Eldar, Jun 29 2025: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/9 - 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/18 - 4*log(2)/3 + 2/3. (End)
Extensions
More terms from Reinhard Zumkeller, Nov 18 2004
Comments