cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085789 Partial sums of n 3-spaced triangular numbers beginning with t(2), e.g., a(2) = t(2) + t(5) = 3 + 15 = 18.

Original entry on oeis.org

3, 18, 54, 120, 225, 378, 588, 864, 1215, 1650, 2178, 2808, 3549, 4410, 5400, 6528, 7803, 9234, 10830, 12600, 14553, 16698, 19044, 21600, 24375, 27378, 30618, 34104, 37845, 41850, 46128, 50688, 55539, 60690, 66150, 71928, 78033, 84474, 91260, 98400, 105903
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Sums of rows of triangle A100345 (n>0).

Crossrefs

Programs

  • Magma
    [3/2*n^2*(n+1): n in [1..40]]; // Vincenzo Librandi, Aug 14 2017
  • Mathematica
    CoefficientList[Series[3 (1 + 2 x) / (1 - x)^4, {x, 0, 40}], x](* Vincenzo Librandi, Aug 14 2017 *)
    LinearRecurrence[{4,-6,4,-1},{3,18,54,120},50] (* Harvey P. Dale, May 14 2023 *)

Formula

a(n) = 3/2 * n^2*(n+1).
a(n) = 3*n*binomial(n+1,2) = 3*n*A000217(n) = 3*A002411(n). - Arkadiusz Wesolowski, Feb 10 2012
G.f.: 3*(x + 2*x^2)/(1 - x)^4. - Arkadiusz Wesolowski, Feb 11 2012
From Amiram Eldar, Jun 29 2025: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/9 - 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/18 - 4*log(2)/3 + 2/3. (End)

Extensions

More terms from Reinhard Zumkeller, Nov 18 2004