cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085807 Permanent of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.

Original entry on oeis.org

1, 0, 1, 4, 64, 1152, 34372, 1335008, 69599744, 4577345152, 374491314176, 37154032517376, 4402467119882240, 613680867638476800, 99443966100565999872, 18534733913629064343552, 3937496200758879526977536, 945776134421421651222708224, 255043190756805184245158084608
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 24 2003

Keywords

Comments

Conjecture: For any odd prime p, we have a(p) == -1/2 (mod p). - Zhi-Wei Sun, Aug 30 2021
Conjecture: a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal. - Stefano Spezia, Jul 05 2024

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> abs(i-j)))):
    seq(a(n), n=0..18);  # Alois P. Heinz, Nov 14 2016
  • Mathematica
    a[n_]:=Permanent[Table[Abs[i - j], {i, n}, {j, n}]]; Join[{1}, Array[a, 18]] (* Stefano Spezia, Jun 28 2024 *)
  • PARI
    permRWNb(a)= n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; in=vectorv(n); x=in; x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1; z=1-2*in[j]; in[j]+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p)
    for(n=1,22,a=matrix(n,n,i,j,abs(i-j));print1(permRWNb(a)",")) \\  Herman Jamke (hermanjamke(AT)fastmail.fm), May 14 2007
    
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, abs(i-j)))}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 12 2021
    
  • Python
    from sympy import Matrix
    def A085807(n): return Matrix(n,n,[abs(j-k) for j in range(n) for k in range(n)]).per() # Chai Wah Wu, Sep 14 2021

Extensions

More terms from Vladeta Jovovic, Jul 26 2003
a(0)=1 prepended by Alois P. Heinz, Nov 14 2016