A085866 a(1) = 3, a(n+1) = a(n)*phi(a(n)), where phi(n) is Euler's totient function.
3, 6, 12, 48, 768, 196608, 12884901888, 55340232221128654848, 1020847100762815390390123822295304634368, 347376267711948586270712955026063723559809953996921692118372752023739388919808
Offset: 1
Examples
a(3) = 12 and phi(12)= 4, hence a(4) = 12*4 = 48.
Links
- V. C. Harris, Problem 78, National Mathematics Magazine 9, no.6 (1935), p. 180.
- Dixon Jones, A chronology of continued square roots and other continued compositions, through the year 2016, arXiv:1707.06139, 2018. See bibliography item 80.
Programs
-
Magma
[3] cat [3*2^(2^(n-2)): n in [2..11]]; // Vincenzo Librandi, Jun 19 2018
-
Mathematica
RecurrenceTable[{a[1]==3, a[n+1]==a[n] EulerPhi [a[n]]}, a, {n, 20}] (* Vincenzo Librandi, Jun 19 2018 *) NestList[# EulerPhi[#]&,3,10] (* Harvey P. Dale, Jun 23 2022 *)
-
PARI
for(n=1,11,if(n==1,a=3,a*=eulerphi(a)); print1(a, ", "); )
Formula
a(n) = 3*2^(2^(n-2)).
Extensions
More terms from Ray Chandler, Jul 16 2003
Comments