A085880 Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0
Examples
Triangle starts: [ 1] 1; [ 2] 1, 1; [ 3] 2, 4, 2; [ 4] 5, 15, 15, 5; [ 5] 14, 56, 84, 56, 14; [ 6] 42, 210, 420, 420, 210, 42; [ 7] 132, 792, 1980, 2640, 1980, 792, 132; [ 8] 429, 3003, 9009, 15015, 15015, 9009, 3003, 429; [ 9] 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430; [10] 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
-
Magma
[Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
-
Maple
seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
-
Mathematica
Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
-
PARI
tabl(nn) = {for (n=0, nn, c = binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
-
Sage
[[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
Formula
Triangle given by [1, 1, 1, 1, 1, 1, ...] DELTA [1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
Sum_{k>=0} T(n, k) = A151374(n) (row sums). - Philippe Deléham, Aug 11 2005
G.f.: (1-sqrt(1-4*(x+y)))/(2*(x+y)). - Vladimir Kruchinin, Apr 09 2015
Comments