cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086041 Primes that are concatenations of 5 consecutive primes.

Original entry on oeis.org

711131719, 4753596167, 5359616771, 6771737983, 97101103107109, 101103107109113, 149151157163167, 401409419421431, 431433439443449, 479487491499503, 487491499503509, 757761769773787, 827829839853857
Offset: 1

Views

Author

Chuck Seggelin, Jul 07 2003

Keywords

Examples

			a(1)=711131719 because 711131719 is prime and the concatenation of 7, 11, 13, 17 and 19.
		

Crossrefs

A030473 Primes which are concatenations of 4 consecutive primes.

Original entry on oeis.org

2357, 67717379, 838997101, 139149151157, 149151157163, 383389397401, 503509521523, 557563569571, 577587593599, 587593599601, 601607613617, 613617619631, 727733739743, 937941947953, 1181118711931201
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    P:= select(isprime,[2,seq(p,p=3..10^4,2)]):
    select(isprime,[seq(P[i+3]+10^(1+ilog10(P[i+3]))*P[i+2] + 10^(2+ilog10(P[i+3])+ilog10(P[i+2]))*P[i+1] + 10^(3+ilog10(P[i+3])+ilog10(P[i+2])+ilog10(P[i+1]))*P[i], i=1..nops(P)-3)]); # Robert Israel, Apr 14 2016

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A099727 Concatenations of six consecutive primes forming a prime.

Original entry on oeis.org

113127131137139149, 569571577587593599, 727733739743751757, 733739743751757761, 739743751757761769, 102110311033103910491051, 105110611063106910871091, 110911171123112911511153, 118111871193120112131217, 138113991409142314271429
Offset: 1

Views

Author

Ray G. Opao, Nov 07 2004

Keywords

Examples

			The prime 113127131137139149 is a concatenation of the consecutive primes 113, 127, 131, 137, 139 and 149.
		

Crossrefs

Programs

  • Maple
    select(isprime, [seq(parse(cat([seq(ithprime(i), i=n+0..n+5)][])), n=1..500)])[]; # K. D. Bajpai, Mar 24 2014
  • Mathematica
    Select[FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[Prime[Range[ 300]],6,1],PrimeQ] (* Harvey P. Dale, Apr 30 2020 *)

A239789 Primes which are a concatenation of prime(k), prime(k+2) and prime(k+4) for some k.

Original entry on oeis.org

172331, 233141, 717989, 137149157, 191197211, 197211227, 223229239, 229239251, 257269277, 331347353, 353367379, 359373383, 467487499, 521541557, 617631643, 619641647, 647659673, 677691709, 733743757, 787809821, 797811823, 103310491061, 106110691091, 109711091123
Offset: 1

Views

Author

K. D. Bajpai, Mar 26 2014

Keywords

Examples

			172331 is a prime and appears in the sequence because it is the concatenation of prime(7), prime(7+2) and prime(7+4).
233141 is a prime and appears in the sequence because it is the concatenation of prime(9), prime(9+2) and prime(9+4).
		

Crossrefs

Programs

  • Maple
    with(StringTools): KD := proc() local a,b,d,e; a:=ithprime(n); b:=ithprime(n+2); d:=ithprime(n+4);
    e:= parse(cat(a,b,d)); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[Prime[n]], IntegerDigits[Prime[n+2]], IntegerDigits[Prime[n+4]]}]], {n,1,500}],PrimeQ]

A239974 Primes which are a concatenation of prime(k+4), prime(k+2) and prime(k) for some k.

Original entry on oeis.org

1373, 433729, 615343, 797161, 837367, 897971, 149137127, 193181173, 227211197, 337317311, 367353347, 401389379, 443433421, 557541521, 577569557, 587571563, 757743733, 811797773, 823811797, 10191009991, 10211013997, 116311511123, 120111871171, 130713011291
Offset: 1

Views

Author

K. D. Bajpai, Mar 30 2014

Keywords

Comments

All the terms in the sequence are primes which are a reverse concatenation of prime(k), prime(k+2) and prime(k+4) for some k.

Examples

			1373 is a prime and appears in the sequence because it is the concatenation of prime(2+4), prime(2+2) and prime(2).
433729 is a prime and appears in the sequence because it is the concatenation of prime(10+4), prime(10+2) and prime(10).
		

Crossrefs

Programs

  • Maple
    with(StringTools): KD := proc() local a, b, d, e; a:=ithprime(n+4); b:=ithprime(n+2); d:=ithprime(n);  e:= parse(cat(a, b, d)); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[Prime[n+4]],IntegerDigits[Prime[n+2]], IntegerDigits[Prime[n]]}]], {n,1,500}], PrimeQ]
Showing 1-5 of 5 results.