cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A030469 Primes which are concatenations of three consecutive primes.

Original entry on oeis.org

5711, 111317, 171923, 313741, 414347, 8997101, 229233239, 239241251, 263269271, 307311313, 313317331, 317331337, 353359367, 359367373, 383389397, 389397401, 401409419, 409419421, 439443449, 449457461
Offset: 1

Views

Author

Keywords

Comments

a(n) = "p(k) p(k+1) p(k+2)" where p(k) is k-th prime
It is conjectured that sequence is infinite. - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009

Examples

			(1) 5=p(3), 7=p(4), 11=p(5) gives a(1).
(2) 7=p(4), 11=p(5), 13=p(6), but 71113 = 7 x 10159
		

References

  • Richard E. Crandall, Carl Pomerance: Prime Numbers, Springer 2005 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009
  • John Derbyshire: Prime obsession, Joseph Henry Press, Washington, DC 2003 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009
  • Marcus du Sautoy: Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits/@{Prime[n],Prime[n+1],Prime[n+2]}]],{n,11000}],PrimeQ] (* Zak Seidov, Oct 16 2009 *)
    concat[{a_,b_,c_}]:=FromDigits[Flatten[IntegerDigits/@{a,b,c}]]; Select[ concat/@ Partition[ Prime[ Range[200]],3,1],PrimeQ] (* Harvey P. Dale, Sep 06 2017 *)
  • PARI
    for(i=1,999, isprime(p=eval(Str(prime(i),prime(i+1),prime(i+2)))) & print1(p," ")) \\ M. F. Hasler, Nov 10 2009

Formula

A132903 INTERSECT A000040. - R. J. Mathar, Nov 11 2009

A086041 Primes that are concatenations of 5 consecutive primes.

Original entry on oeis.org

711131719, 4753596167, 5359616771, 6771737983, 97101103107109, 101103107109113, 149151157163167, 401409419421431, 431433439443449, 479487491499503, 487491499503509, 757761769773787, 827829839853857
Offset: 1

Views

Author

Chuck Seggelin, Jul 07 2003

Keywords

Examples

			a(1)=711131719 because 711131719 is prime and the concatenation of 7, 11, 13, 17 and 19.
		

Crossrefs

A030997 Smallest prime which is a concatenation of n consecutive primes.

Original entry on oeis.org

2, 23, 5711, 2357, 711131719, 113127131137139149, 29313741434753, 107109113127131137139149, 211223227229233239241251257, 691701709719727733739743751757, 2329313741434753596167
Offset: 1

Views

Author

Keywords

Examples

			a(5) = 711131719 is the smallest prime which is the concatenation of five consecutive primes 7, 11, 13, 17 and 19.
		

Crossrefs

Cf. A030461 (primes that are concatenations of two primes), A030469 (three primes), A030473 (four primes), A086041 (five primes).

Programs

  • PARI
    for(k=1,19, for(i=0,1e9, isprime( eval( p=concat( vector( k,j,Str( prime( i+j )))))) & break); print1(p,", ")) \\ M. F. Hasler, Nov 10 2009

A099727 Concatenations of six consecutive primes forming a prime.

Original entry on oeis.org

113127131137139149, 569571577587593599, 727733739743751757, 733739743751757761, 739743751757761769, 102110311033103910491051, 105110611063106910871091, 110911171123112911511153, 118111871193120112131217, 138113991409142314271429
Offset: 1

Views

Author

Ray G. Opao, Nov 07 2004

Keywords

Examples

			The prime 113127131137139149 is a concatenation of the consecutive primes 113, 127, 131, 137, 139 and 149.
		

Crossrefs

Programs

  • Maple
    select(isprime, [seq(parse(cat([seq(ithprime(i), i=n+0..n+5)][])), n=1..500)])[]; # K. D. Bajpai, Mar 24 2014
  • Mathematica
    Select[FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[Prime[Range[ 300]],6,1],PrimeQ] (* Harvey P. Dale, Apr 30 2020 *)

A239789 Primes which are a concatenation of prime(k), prime(k+2) and prime(k+4) for some k.

Original entry on oeis.org

172331, 233141, 717989, 137149157, 191197211, 197211227, 223229239, 229239251, 257269277, 331347353, 353367379, 359373383, 467487499, 521541557, 617631643, 619641647, 647659673, 677691709, 733743757, 787809821, 797811823, 103310491061, 106110691091, 109711091123
Offset: 1

Views

Author

K. D. Bajpai, Mar 26 2014

Keywords

Examples

			172331 is a prime and appears in the sequence because it is the concatenation of prime(7), prime(7+2) and prime(7+4).
233141 is a prime and appears in the sequence because it is the concatenation of prime(9), prime(9+2) and prime(9+4).
		

Crossrefs

Programs

  • Maple
    with(StringTools): KD := proc() local a,b,d,e; a:=ithprime(n); b:=ithprime(n+2); d:=ithprime(n+4);
    e:= parse(cat(a,b,d)); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[Prime[n]], IntegerDigits[Prime[n+2]], IntegerDigits[Prime[n+4]]}]], {n,1,500}],PrimeQ]

A239974 Primes which are a concatenation of prime(k+4), prime(k+2) and prime(k) for some k.

Original entry on oeis.org

1373, 433729, 615343, 797161, 837367, 897971, 149137127, 193181173, 227211197, 337317311, 367353347, 401389379, 443433421, 557541521, 577569557, 587571563, 757743733, 811797773, 823811797, 10191009991, 10211013997, 116311511123, 120111871171, 130713011291
Offset: 1

Views

Author

K. D. Bajpai, Mar 30 2014

Keywords

Comments

All the terms in the sequence are primes which are a reverse concatenation of prime(k), prime(k+2) and prime(k+4) for some k.

Examples

			1373 is a prime and appears in the sequence because it is the concatenation of prime(2+4), prime(2+2) and prime(2).
433729 is a prime and appears in the sequence because it is the concatenation of prime(10+4), prime(10+2) and prime(10).
		

Crossrefs

Programs

  • Maple
    with(StringTools): KD := proc() local a, b, d, e; a:=ithprime(n+4); b:=ithprime(n+2); d:=ithprime(n);  e:= parse(cat(a, b, d)); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[Prime[n+4]],IntegerDigits[Prime[n+2]], IntegerDigits[Prime[n]]}]], {n,1,500}], PrimeQ]
Showing 1-6 of 6 results.