cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A068656 Duplicate of A030997.

Original entry on oeis.org

2, 23, 5711, 2357, 711131719, 113127131137139149, 29313741434753
Offset: 1

Views

Author

Keywords

A030469 Primes which are concatenations of three consecutive primes.

Original entry on oeis.org

5711, 111317, 171923, 313741, 414347, 8997101, 229233239, 239241251, 263269271, 307311313, 313317331, 317331337, 353359367, 359367373, 383389397, 389397401, 401409419, 409419421, 439443449, 449457461
Offset: 1

Views

Author

Keywords

Comments

a(n) = "p(k) p(k+1) p(k+2)" where p(k) is k-th prime
It is conjectured that sequence is infinite. - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009

Examples

			(1) 5=p(3), 7=p(4), 11=p(5) gives a(1).
(2) 7=p(4), 11=p(5), 13=p(6), but 71113 = 7 x 10159
		

References

  • Richard E. Crandall, Carl Pomerance: Prime Numbers, Springer 2005 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009
  • John Derbyshire: Prime obsession, Joseph Henry Press, Washington, DC 2003 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009
  • Marcus du Sautoy: Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits/@{Prime[n],Prime[n+1],Prime[n+2]}]],{n,11000}],PrimeQ] (* Zak Seidov, Oct 16 2009 *)
    concat[{a_,b_,c_}]:=FromDigits[Flatten[IntegerDigits/@{a,b,c}]]; Select[ concat/@ Partition[ Prime[ Range[200]],3,1],PrimeQ] (* Harvey P. Dale, Sep 06 2017 *)
  • PARI
    for(i=1,999, isprime(p=eval(Str(prime(i),prime(i+1),prime(i+2)))) & print1(p," ")) \\ M. F. Hasler, Nov 10 2009

Formula

A132903 INTERSECT A000040. - R. J. Mathar, Nov 11 2009

A069151 Concatenations of consecutive primes, starting with 2, that are also prime.

Original entry on oeis.org

2, 23, 2357
Offset: 1

Views

Author

Joseph L. Pe, Apr 08 2002

Keywords

Comments

Primes in A019518.
The next term is the 355-digit number 2357111317192329313741434753...677683691701709719 which is too large to include here. See A046035, A046284.
The term after the 355-digit term has 499 digits, and the next two terms after that have 1171 and 1543 digits respectively. - Harvey P. Dale, Oct 03 2024

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, NY, 2005; see p. 78. [The 2002 printing states incorrectly that 2357...5441 is prime.]

Crossrefs

Cf. A019518.
Cf. A046035 (Numbers n such that the concatenation of the first n primes is prime)
Cf. A046284 (Primes p such that concatenation of primes from 2 through p is a prime).
Cf. A030997 (Smallest prime which is a concatenation of n consecutive primes).

Programs

  • Mathematica
    Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[ Range[10^3]]]]], ?PrimeQ] (* _Eric W. Weisstein, Oct 30 2015 *)
    Select[Table[FromDigits[Flatten[IntegerDigits/@Prime[Range[n]]]],{n,500}],PrimeQ] (* Harvey P. Dale, Oct 03 2024 *)
  • PARI
    s=""; for(n=1, 200, s=concat(s, prime(n)); if(ispseudoprime( eval(s)), print1(s", "))) \\ Jens Kruse Andersen, Jun 26 2014
    
  • Python
    from sympy import isprime, nextprime
    def afind(terms, verbose=False):
      n, p, pstr = 0, 2, "2"
      while n < terms:
        if isprime(int(pstr)): n += 1; print(n, int(pstr))
        p = nextprime(p); pstr += str(p)
    afind(5) # Michael S. Branicky, Feb 23 2021

Extensions

Edited by Robert G. Wilson v, Apr 11 2002
Entry revised Jan 18 2004

A030996 Concatenation of n consecutive primes starting with the prime a(n) is a prime.

Original entry on oeis.org

2, 2, 5, 2, 7, 113, 29, 107, 211, 691, 23, 11, 5, 71, 277, 181, 13, 307, 43, 223, 43, 167, 31, 23, 151, 29, 67, 383, 19, 53, 53, 277, 541, 37, 103, 127, 947, 79, 4409, 1699, 13, 73, 31, 107, 751, 1187, 1069, 859, 67, 229, 293, 47, 1303, 2909, 1319
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 30 2010

A052077 Smallest prime formed by concatenating n consecutive increasing numbers, or 0 if no such prime exists.

Original entry on oeis.org

2, 23, 0, 4567, 1516171819, 0, 78910111213, 23456789, 0, 45678910111213, 129130131132133134135136137138139, 0, 567891011121314151617, 5051525354555657585960616263, 0, 128129130131132133134135136137138139140141142143
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Starting numbers in concatenations are given by A052079.

Crossrefs

Programs

  • Mathematica
    f[n_] := If[Mod[n, 3] == 0, 0, Block[{k = 1}, While[d = FromDigits@ Flatten@ IntegerDigits[ Range[k, k + n - 1]]; !PrimeQ@ d, k++]; d]]; Array[f, 16] (* Robert G. Wilson v, Jun 29 2012 *)

Extensions

Terms a(7)-a(15) are calculated by Carlos Rivera and Felice Russo
a(16) from Max Alekseyev, Jan 31 2010

A167518 Least reversible prime (A007500) which is a concatenation of n consecutive primes.

Original entry on oeis.org

2, 151157, 353359367, 139149151157, 101103107109113, 704517045770459704817048770489, 97101103107109113127, 1519315199152171522715233152411525915263, 382138233833384738513853386338773881, 9319932393379341934393499371937793919397
Offset: 1

Views

Author

M. F. Hasler, Nov 10 2009

Keywords

Comments

Here the weaker definition of A007500 is used, but all terms > 2 known so far are also Emirps in the sense of A006567 (i.e. different from their reversal), so it is sufficient to change the first term to 13 in order to have a sequence of "true" emirps.
Is it possible to prove that all terms > 2 are in A006567?

Crossrefs

Programs

  • PARI
    for(k=1,19,for(i=0,1e9, isprime( eval( p=concat( vector( k,j,Str( prime( i+j )))))) & isprime(eval(concat(vecextract(Vec(p),"-1..1")))) & break); print1(p,", "))

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010
a(9)-a(10) from Donovan Johnson, Sep 25 2011

A297935 Least prime k such that n concatenations of n+1 consecutive primes in base 2, starting from k, generate another prime in base 10.

Original entry on oeis.org

2, 2, 3, 2, 19, 53, 163, 53, 167, 31, 3, 37, 743, 97, 271, 17, 3, 41, 131, 691, 97, 181, 587, 523, 227, 211, 229, 3, 1697, 151, 1009, 23, 131, 151, 3137, 1621, 71, 439, 389, 521, 811, 1039, 179, 23, 311, 193, 227, 5869, 577, 6263, 31, 1901, 113, 1439, 1451, 107
Offset: 0

Views

Author

Paolo P. Lava, Jan 09 2018

Keywords

Examples

			a(4) = 19 because the concatenation of 19, 23, 29, 31, 37 in base 2 is concat(concat(concat(concat(10011, 10111), 11101), 11111), 100101) that is the prime 41414629 in base 10 and 19 is the least prime to have this property.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,i,k,n;
    for n from 1 to q do for k from 1 to q do
    a:=ithprime(k); b:=convert(a,binary,decimal);
    for i from 1 to n-1 do a:=nextprime(a);
    c:=convert(a,binary,decimal); b:=b*10^(ilog10(c)+1)+c; od;
    a:=convert(b,decimal,binary); if isprime(a) then print(ithprime(k)); break; fi; od; od; end: P(10^3);
  • Mathematica
    Table[Prime@ SelectFirst[Range[2^12], Function[k, PrimeQ@ FromDigits[Join @@ IntegerDigits[Prime@ Range[k, k + n], 2],2]]], {n, 0, 55}] (* Michael De Vlieger, Jan 09 2018 *)
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
    concat_primes(start, num) = my(v=[], s=""); forprime(p=start, , v=concat(v, [eva(binary(p))]); if(#v==num, break)); for(k=1, #v, s=concat(s, Str(v[k]))); eval(s)
    a(n) = forprime(k=1, , if(ispseudoprime(decimal(digits(concat_primes(k, n+1)), 2)), return(k))) \\ Felix Fröhlich, Jan 09 2018
Showing 1-7 of 7 results.