A068656 Duplicate of A030997.
2, 23, 5711, 2357, 711131719, 113127131137139149, 29313741434753
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
(1) 5=p(3), 7=p(4), 11=p(5) gives a(1). (2) 7=p(4), 11=p(5), 13=p(6), but 71113 = 7 x 10159
Select[Table[FromDigits[Flatten[IntegerDigits/@{Prime[n],Prime[n+1],Prime[n+2]}]],{n,11000}],PrimeQ] (* Zak Seidov, Oct 16 2009 *) concat[{a_,b_,c_}]:=FromDigits[Flatten[IntegerDigits/@{a,b,c}]]; Select[ concat/@ Partition[ Prime[ Range[200]],3,1],PrimeQ] (* Harvey P. Dale, Sep 06 2017 *)
for(i=1,999, isprime(p=eval(Str(prime(i),prime(i+1),prime(i+2)))) & print1(p," ")) \\ M. F. Hasler, Nov 10 2009
Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[ Range[10^3]]]]], ?PrimeQ] (* _Eric W. Weisstein, Oct 30 2015 *) Select[Table[FromDigits[Flatten[IntegerDigits/@Prime[Range[n]]]],{n,500}],PrimeQ] (* Harvey P. Dale, Oct 03 2024 *)
s=""; for(n=1, 200, s=concat(s, prime(n)); if(ispseudoprime( eval(s)), print1(s", "))) \\ Jens Kruse Andersen, Jun 26 2014
from sympy import isprime, nextprime def afind(terms, verbose=False): n, p, pstr = 0, 2, "2" while n < terms: if isprime(int(pstr)): n += 1; print(n, int(pstr)) p = nextprime(p); pstr += str(p) afind(5) # Michael S. Branicky, Feb 23 2021
f[n_] := If[Mod[n, 3] == 0, 0, Block[{k = 1}, While[d = FromDigits@ Flatten@ IntegerDigits[ Range[k, k + n - 1]]; !PrimeQ@ d, k++]; d]]; Array[f, 16] (* Robert G. Wilson v, Jun 29 2012 *)
for(k=1,19,for(i=0,1e9, isprime( eval( p=concat( vector( k,j,Str( prime( i+j )))))) & isprime(eval(concat(vecextract(Vec(p),"-1..1")))) & break); print1(p,", "))
a(4) = 19 because the concatenation of 19, 23, 29, 31, 37 in base 2 is concat(concat(concat(concat(10011, 10111), 11101), 11111), 100101) that is the prime 41414629 in base 10 and 19 is the least prime to have this property.
with(numtheory): P:=proc(q) local a,b,c,i,k,n; for n from 1 to q do for k from 1 to q do a:=ithprime(k); b:=convert(a,binary,decimal); for i from 1 to n-1 do a:=nextprime(a); c:=convert(a,binary,decimal); b:=b*10^(ilog10(c)+1)+c; od; a:=convert(b,decimal,binary); if isprime(a) then print(ithprime(k)); break; fi; od; od; end: P(10^3);
Table[Prime@ SelectFirst[Range[2^12], Function[k, PrimeQ@ FromDigits[Join @@ IntegerDigits[Prime@ Range[k, k + n], 2],2]]], {n, 0, 55}] (* Michael De Vlieger, Jan 09 2018 *)
eva(n) = subst(Pol(n), x, 10) decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i]) concat_primes(start, num) = my(v=[], s=""); forprime(p=start, , v=concat(v, [eva(binary(p))]); if(#v==num, break)); for(k=1, #v, s=concat(s, Str(v[k]))); eval(s) a(n) = forprime(k=1, , if(ispseudoprime(decimal(digits(concat_primes(k, n+1)), 2)), return(k))) \\ Felix Fröhlich, Jan 09 2018
Comments