cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086089 Decimal expansion of 3*sqrt(3)/(2*Pi).

Original entry on oeis.org

8, 2, 6, 9, 9, 3, 3, 4, 3, 1, 3, 2, 6, 8, 8, 0, 7, 4, 2, 6, 6, 9, 8, 9, 7, 4, 7, 4, 6, 9, 4, 5, 4, 1, 6, 2, 0, 9, 6, 0, 7, 9, 7, 2, 0, 5, 4, 9, 9, 6, 0, 9, 7, 9, 1, 9, 9, 0, 4, 9, 0, 3, 0, 4, 3, 6, 5, 4, 5, 4, 5, 5, 2, 0, 3, 9, 0, 4, 6, 9, 2, 2, 6, 0, 5, 7, 0, 0, 4, 3, 2, 3, 4, 7, 5, 6, 3, 3, 3, 8, 1, 1
Offset: 0

Views

Author

Eric W. Weisstein, Jul 08 2003

Keywords

Comments

Limiting ratio of areas in the disk-covering problem.
From Daniel Forgues, May 26 2010: (Start)
Consider: A060544 (Centered 9-gonal numbers), starting with a(1)=1, P_c(9, n), n >= 1. Every third triangular number, starting with a(1)=1, P(3, 3n-2), n >= 1. Then:
1/(Sum_{n=0..infinity} 1/binomial(3n+2,2)) = 1/(Sum_{n=1..infinity} 1/binomial(3n-1,2)) = 1/(Sum_{n=1..infinity} 1/P_c(9,n)) = 1/(Sum_{n=1..infinity} 1/P(3,3n-2)) = 1/(Sum_{n=1..infinity} 1/A060544(n)) = this constant. (End)
The area of a regular hexagon circumscribed in a unit-area circle. - Amiram Eldar, Nov 05 2020

Examples

			0.8269933431326880742669897474694541620960797205499609791990...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Sections 5.9 p. 325 and 8.2 p. 486.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 196.

Crossrefs

Programs

  • Mathematica
    RealDigits[3 Sqrt[3]/(2 Pi), 10, 110][[1]] (* or, from the third comment: *) RealDigits[N[Product[1 - 1/(3 n)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    3*sqrt(3)/(2*Pi) \\ Michel Marcus, Nov 05 2020

Formula

Equals Product_{n>=1} (1 - 1/(3n)^2). - Bruno Berselli, Apr 02 2013
Equals sinc(Pi/3). - Peter Luschny, Oct 04 2019
Equals Product{k>=1} cos(Pi/(3*2^k)). - Amiram Eldar, Aug 20 2020
Equals Sum_{k>=0} mu(3*k+1)/(3*k+1) (Nevanlinna, 1973). - Amiram Eldar, Dec 21 2020