A086089 Decimal expansion of 3*sqrt(3)/(2*Pi).
8, 2, 6, 9, 9, 3, 3, 4, 3, 1, 3, 2, 6, 8, 8, 0, 7, 4, 2, 6, 6, 9, 8, 9, 7, 4, 7, 4, 6, 9, 4, 5, 4, 1, 6, 2, 0, 9, 6, 0, 7, 9, 7, 2, 0, 5, 4, 9, 9, 6, 0, 9, 7, 9, 1, 9, 9, 0, 4, 9, 0, 3, 0, 4, 3, 6, 5, 4, 5, 4, 5, 5, 2, 0, 3, 9, 0, 4, 6, 9, 2, 2, 6, 0, 5, 7, 0, 0, 4, 3, 2, 3, 4, 7, 5, 6, 3, 3, 3, 8, 1, 1
Offset: 0
Examples
0.8269933431326880742669897474694541620960797205499609791990...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Sections 5.9 p. 325 and 8.2 p. 486.
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 196.
Links
- Veikko Nevanlinna, On constants connected with the prime number theorem for arithmetic progressions, Annales Academiae Scientiarum Fennicae Ser. A. I., No. 539 (1973).
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[3 Sqrt[3]/(2 Pi), 10, 110][[1]] (* or, from the third comment: *) RealDigits[N[Product[1 - 1/(3 n)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
-
PARI
3*sqrt(3)/(2*Pi) \\ Michel Marcus, Nov 05 2020
Formula
Equals Product_{n>=1} (1 - 1/(3n)^2). - Bruno Berselli, Apr 02 2013
Equals sinc(Pi/3). - Peter Luschny, Oct 04 2019
Equals Product{k>=1} cos(Pi/(3*2^k)). - Amiram Eldar, Aug 20 2020
Equals Sum_{k>=0} mu(3*k+1)/(3*k+1) (Nevanlinna, 1973). - Amiram Eldar, Dec 21 2020
Comments