cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A086172 Numbers n such that n*prime(n)+1 is prime.

Original entry on oeis.org

1, 2, 4, 6, 24, 30, 36, 42, 72, 84, 98, 100, 116, 126, 128, 144, 162, 174, 206, 212, 228, 288, 312, 318, 324, 336, 350, 360, 406, 408, 416, 418, 452, 458, 466, 498, 510, 522, 528, 530, 536, 546, 548, 556, 604, 654, 660, 666, 682, 684, 690, 708, 710, 728, 738
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) + 1)]; // Vincenzo Librandi, Oct 05 2012
    
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]+1]&]
  • PARI
    is(n,p=prime(n))=isprime(n*p+1) \\ Charles R Greathouse IV, Feb 17 2017

A086174 Numbers n such that n*prime(n)+2 is a prime.

Original entry on oeis.org

3, 29, 33, 45, 65, 81, 91, 93, 95, 101, 103, 105, 109, 123, 153, 155, 189, 201, 225, 251, 253, 273, 283, 291, 305, 321, 363, 367, 371, 375, 387, 429, 431, 469, 475, 501, 515, 517, 525, 541, 567, 601, 613, 627, 633, 643, 669, 675, 701, 715, 717, 723, 729, 735
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) + 2)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]+2]&]

A086175 Numbers n such that n*prime(n)-2 is prime.

Original entry on oeis.org

3, 5, 21, 23, 25, 33, 37, 45, 57, 81, 83, 85, 93, 121, 123, 133, 137, 173, 183, 187, 193, 195, 215, 219, 225, 231, 245, 247, 285, 289, 295, 301, 315, 317, 327, 329, 353, 357, 359, 391, 395, 403, 419, 423, 429, 435, 447, 477, 479, 503, 513, 549, 561, 567, 571
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) - 2)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]-2]&]

A086176 Numbers n such that n*prime(n)+3 is prime.

Original entry on oeis.org

1, 4, 10, 20, 22, 28, 34, 38, 46, 56, 62, 92, 98, 112, 146, 148, 154, 166, 170, 176, 178, 200, 208, 254, 256, 260, 262, 266, 284, 340, 346, 352, 364, 394, 406, 412, 418, 460, 476, 500, 514, 524, 548, 550, 560, 574, 584, 586, 590, 610, 614, 620, 656, 664, 698
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) + 3)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]+3]&]

A086177 Numbers n such that n*prime(n)-3 is prime.

Original entry on oeis.org

2, 8, 14, 34, 40, 46, 50, 80, 82, 88, 110, 116, 118, 130, 142, 200, 224, 226, 238, 256, 274, 278, 280, 286, 292, 302, 322, 328, 332, 350, 352, 362, 380, 398, 412, 430, 436, 464, 496, 544, 572, 586, 616, 620, 622, 634, 638, 646, 650, 662, 676, 688, 700, 734
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) - 3)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]-3]&]

A085637 Numbers k such that k*prime(k) -+ 1 are twin primes.

Original entry on oeis.org

2, 30, 72, 144, 312, 336, 510, 690, 990, 1122, 1254, 1272, 1410, 2082, 2376, 2508, 2586, 2664, 2802, 3060, 3096, 3180, 3432, 3510, 3684, 4062, 4506, 5526, 5790, 6174, 7224, 8064, 8388, 9078, 9390, 9504, 10698, 10794, 10884, 10992, 11046, 11334
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Intersection of A086172 and A086173. See also A086174, A086175, A086176, A086177.

Examples

			k=30 is a term because 30*prime(30) +- 1 = 3390 +- 1 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..11500] | IsPrime(n*NthPrime(n) - 1) and IsPrime(n*NthPrime(n) + 1) ]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[15000], PrimeQ[ # Prime[ # ] - 1] && PrimeQ[ # Prime[ # ] + 1] &]
    Select[Range[12000],AllTrue[#*Prime[#]+{1,-1},PrimeQ]&] (* Harvey P. Dale, Mar 21 2025 *)

A096065 Let p(k) = k-th prime; sequence gives primes q of the form q = k*p(k) - 1 for some k.

Original entry on oeis.org

5, 151, 443, 601, 1097, 3389, 13553, 20921, 25847, 32719, 41669, 46153, 56813, 66109, 84691, 119087, 129449, 150559, 188857, 201847, 206273, 240173, 266863, 271109, 310577, 318751, 346553, 395749, 430819, 446951, 451933, 507079, 645527
Offset: 0

Views

Author

Alonso del Arte, Jul 20 2004

Keywords

Examples

			a(3)=443 because the twelfth prime is 37 and 12 * 37 - 1 = 443.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[n]*n - 1, {n, 320}], PrimeQ]

A232442 a(n) = |{0 < k < n: m*prime(m) - 1 and m*prime(m) + 1 are both prime with m = sigma(k) + phi(n-k)}|, where sigma(k) is the sum of all positive divisors of k and phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 6, 1, 2, 2, 0, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 4, 1, 1, 0, 1, 2, 2, 2, 4, 0, 0, 1, 2, 0, 3, 3, 3, 2, 0, 1, 1, 2, 1, 2, 0, 1, 1, 14, 3, 2, 2, 2, 2, 3, 4, 5, 3, 2, 3, 1, 3, 3, 4, 6, 3, 0, 5, 3, 1, 0, 5, 2, 0, 3, 6, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 14 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 214.
This implies that there are infinitely many twin prime pairs of the special form {m*prime(m) - 1, m*prime(m) + 1}.
We have verified the conjecture for n up to 10^5.

Examples

			a(25) = 1 since sigma(6) + phi(19) = 12 + 18 = 30 with {30*prime(30) - 1, 30*prime(30) + 1} = {3389, 3391} a twin prime pair.
a(100) = 1 since sigma(75) + phi(25) = 124 + 20 = 144 with {144*prime(144) - 1, 144*prime(144) + 1} = {119087, 119089} a twin prime pair.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=DivisorSigma[1,n]
    q[n_]:=PrimeQ[n*Prime[n]-1]&&PrimeQ[n*Prime[n]+1]
    f[n_,k_]:=sigma[k]+EulerPhi[n-k]
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A288491 Numbers k such that k^k*prime(k) - 1 is prime.

Original entry on oeis.org

2, 6, 40, 56, 954
Offset: 1

Views

Author

Vincenzo Librandi, Jun 10 2017

Keywords

Comments

a(6) > 22000. - Giovanni Resta, Jun 12 2017
a(6) > 40000. - Michael S. Branicky, Jan 05 2025

Examples

			a(1) = 2 because 3*2^2-1 = 11 a prime.
a(2) = 6 because 13*6^6-1 = 606527 a prime.
		

Crossrefs

Cf. A086173.

Programs

  • Magma
    [n: n in [1..1000] | IsPrime(NthPrime(n)*n^n-1)];
  • Mathematica
    Select[Range[1000], PrimeQ[Prime[#] #^# - 1] &]
Showing 1-9 of 9 results.