cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A086173 Numbers k such that k*prime(k)-1 is prime.

Original entry on oeis.org

2, 8, 12, 14, 18, 30, 54, 66, 72, 80, 90, 94, 102, 110, 124, 144, 150, 160, 178, 184, 186, 198, 208, 210, 222, 224, 234, 250, 260, 264, 266, 280, 312, 336, 342, 370, 390, 400, 414, 432, 450, 462, 468, 470, 472, 476, 510, 564, 570, 596, 598, 600, 616, 652, 690
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) - 1)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]-1]&]

A086174 Numbers n such that n*prime(n)+2 is a prime.

Original entry on oeis.org

3, 29, 33, 45, 65, 81, 91, 93, 95, 101, 103, 105, 109, 123, 153, 155, 189, 201, 225, 251, 253, 273, 283, 291, 305, 321, 363, 367, 371, 375, 387, 429, 431, 469, 475, 501, 515, 517, 525, 541, 567, 601, 613, 627, 633, 643, 669, 675, 701, 715, 717, 723, 729, 735
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) + 2)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]+2]&]

A086175 Numbers n such that n*prime(n)-2 is prime.

Original entry on oeis.org

3, 5, 21, 23, 25, 33, 37, 45, 57, 81, 83, 85, 93, 121, 123, 133, 137, 173, 183, 187, 193, 195, 215, 219, 225, 231, 245, 247, 285, 289, 295, 301, 315, 317, 327, 329, 353, 357, 359, 391, 395, 403, 419, 423, 429, 435, 447, 477, 479, 503, 513, 549, 561, 567, 571
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) - 2)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]-2]&]

A086176 Numbers n such that n*prime(n)+3 is prime.

Original entry on oeis.org

1, 4, 10, 20, 22, 28, 34, 38, 46, 56, 62, 92, 98, 112, 146, 148, 154, 166, 170, 176, 178, 200, 208, 254, 256, 260, 262, 266, 284, 340, 346, 352, 364, 394, 406, 412, 418, 460, 476, 500, 514, 524, 548, 550, 560, 574, 584, 586, 590, 610, 614, 620, 656, 664, 698
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) + 3)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]+3]&]

A086177 Numbers n such that n*prime(n)-3 is prime.

Original entry on oeis.org

2, 8, 14, 34, 40, 46, 50, 80, 82, 88, 110, 116, 118, 130, 142, 200, 224, 226, 238, 256, 274, 278, 280, 286, 292, 302, 322, 328, 332, 350, 352, 362, 380, 398, 412, 430, 436, 464, 496, 544, 572, 586, 616, 620, 622, 634, 638, 646, 650, 662, 676, 688, 700, 734
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n*NthPrime(n) - 3)]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[1000], PrimeQ[ # Prime[ # ]-3]&]

A085637 Numbers k such that k*prime(k) -+ 1 are twin primes.

Original entry on oeis.org

2, 30, 72, 144, 312, 336, 510, 690, 990, 1122, 1254, 1272, 1410, 2082, 2376, 2508, 2586, 2664, 2802, 3060, 3096, 3180, 3432, 3510, 3684, 4062, 4506, 5526, 5790, 6174, 7224, 8064, 8388, 9078, 9390, 9504, 10698, 10794, 10884, 10992, 11046, 11334
Offset: 1

Views

Author

Zak Seidov, Jul 11 2003

Keywords

Comments

Intersection of A086172 and A086173. See also A086174, A086175, A086176, A086177.

Examples

			k=30 is a term because 30*prime(30) +- 1 = 3390 +- 1 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..11500] | IsPrime(n*NthPrime(n) - 1) and IsPrime(n*NthPrime(n) + 1) ]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Range[15000], PrimeQ[ # Prime[ # ] - 1] && PrimeQ[ # Prime[ # ] + 1] &]
    Select[Range[12000],AllTrue[#*Prime[#]+{1,-1},PrimeQ]&] (* Harvey P. Dale, Mar 21 2025 *)

A096064 Let p(k) = k-th prime; sequence gives primes q of the form q = k*p(k) + 1 for some k.

Original entry on oeis.org

3, 7, 29, 79, 2137, 3391, 5437, 7603, 25849, 36373, 51059, 54101, 74357, 88327, 92033, 119089, 154387, 179743, 263063, 275813, 328093, 540577, 645529, 671299, 694333, 761713, 824951, 872281, 1133147, 1142809, 1190177, 1206767, 1442333
Offset: 1

Views

Author

Alonso del Arte, Jul 20 2004

Keywords

Examples

			29 is in the sequence because the fourth prime is 7 and 4 * 7 + 1 = 29.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is NthPrime(n)*n + 1 ]; // Vincenzo Librandi, Oct 05 2012
  • Mathematica
    Select[Table[Prime[n]*n + 1, {n, 455}], PrimeQ]

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Oct 05 2012

A192611 Primes prime(k) such that prime(k)*k+1 is also prime.

Original entry on oeis.org

2, 3, 7, 13, 89, 113, 151, 181, 359, 433, 521, 541, 641, 701, 719, 827, 953, 1033, 1277, 1301, 1439, 1877, 2069, 2111, 2143, 2267, 2357, 2423, 2791, 2801, 2861, 2887, 3191, 3251, 3313, 3557, 3643, 3739, 3797, 3821, 3863, 3931, 3947, 4021, 4447
Offset: 1

Views

Author

Andrea Raffetti, Jul 05 2011

Keywords

Comments

Primes p such that p*pi(p)+1 is prime (see Crossrefs).

Examples

			13 is in the list because, being the 6th prime, 13*6+1=79 is prime.
		

Crossrefs

Cf. A000040 The prime numbers.
Cf. A000720 pi(n), the number of primes <= n.

Programs

  • Magma
    [ NthPrime(n): n in [1..650] | IsPrime(NthPrime(n)*n+1) ]; // Bruno Berselli, Jul 05 2011
    
  • Mathematica
    Select[Prime[Range[700]],PrimeQ[# PrimePi[#]+1]&] (* Harvey P. Dale, May 28 2012 *)
  • PARI
    k=0;forprime(p=2,1e4,if(isprime(k++*p+1),print1(p", "))) \\ Charles R Greathouse IV, Jul 05 2011

A232442 a(n) = |{0 < k < n: m*prime(m) - 1 and m*prime(m) + 1 are both prime with m = sigma(k) + phi(n-k)}|, where sigma(k) is the sum of all positive divisors of k and phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 6, 1, 2, 2, 0, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 4, 1, 1, 0, 1, 2, 2, 2, 4, 0, 0, 1, 2, 0, 3, 3, 3, 2, 0, 1, 1, 2, 1, 2, 0, 1, 1, 14, 3, 2, 2, 2, 2, 3, 4, 5, 3, 2, 3, 1, 3, 3, 4, 6, 3, 0, 5, 3, 1, 0, 5, 2, 0, 3, 6, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 14 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 214.
This implies that there are infinitely many twin prime pairs of the special form {m*prime(m) - 1, m*prime(m) + 1}.
We have verified the conjecture for n up to 10^5.

Examples

			a(25) = 1 since sigma(6) + phi(19) = 12 + 18 = 30 with {30*prime(30) - 1, 30*prime(30) + 1} = {3389, 3391} a twin prime pair.
a(100) = 1 since sigma(75) + phi(25) = 124 + 20 = 144 with {144*prime(144) - 1, 144*prime(144) + 1} = {119087, 119089} a twin prime pair.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=DivisorSigma[1,n]
    q[n_]:=PrimeQ[n*Prime[n]-1]&&PrimeQ[n*Prime[n]+1]
    f[n_,k_]:=sigma[k]+EulerPhi[n-k]
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A277124 Numbers k such that (k+1)*prime(k) + k is a prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 13, 14, 20, 21, 26, 29, 30, 33, 35, 36, 39, 41, 43, 49, 54, 55, 62, 68, 69, 75, 76, 79, 81, 89, 90, 105, 110, 113, 117, 119, 126, 134, 141, 146, 154, 162, 174, 176, 178, 179, 186, 191, 195, 207, 209, 215, 216, 222, 225, 227, 230, 231, 234, 237
Offset: 1

Views

Author

Alex Ratushnyak, Sep 30 2016

Keywords

Crossrefs

Programs

  • Maple
    p:= 1: count:= 0: Res:= NULL:
    for n from 1 while count < 100 do
      p:= nextprime(p);
      if isprime(n*p+n+p) then
        count:= count+1; Res:= Res, n
      fi
    od:
    Res; # Robert Israel, Oct 25 2018
  • Mathematica
    npQ[n_]:=Module[{p=Prime[n]},PrimeQ[n*p+n+p]]; Select[Range[250],npQ] (* Harvey P. Dale, Mar 27 2022 *)
  • PARI
    is(n) = isprime((n + 1) * (prime(n) + 1) - 1); \\ Altug Alkan, Oct 01 2016
Showing 1-10 of 10 results.