A086237 Decimal expansion of Porter's constant.
1, 4, 6, 7, 0, 7, 8, 0, 7, 9, 4, 3, 3, 9, 7, 5, 4, 7, 2, 8, 9, 7, 7, 9, 8, 4, 8, 4, 7, 0, 7, 2, 2, 9, 9, 5, 3, 4, 4, 9, 9, 0, 3, 3, 2, 2, 4, 1, 4, 8, 8, 7, 7, 7, 7, 3, 9, 9, 6, 8, 5, 8, 1, 7, 6, 1, 6, 6, 0, 6, 7, 4, 4, 3, 2, 9, 0, 4, 4, 8, 0, 8, 4, 3, 0, 3, 6, 9, 3, 2, 7, 5, 1, 1, 1, 7, 4, 0, 1, 5, 2, 1, 2, 6, 6
Offset: 1
Examples
1.4670780794339754728977984847072299534499033224148...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, p. 157
- Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 113.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Donald E. Knuth, Evaluation of Porter's constant, Computers and Mathematics with Applications, Vol. 2, No. 2 (1976), pp. 137-139.
- Gustav Lochs, Statistik der Teilnenner der zu den echten Brüchen gehörigen regelmäßigen Kettenbrüche, Monatshefte für Mathematik, Vol. 65, No. 1 (1961), pp. 27-52, alternative link.
- John William Porter, On a Theorem of Heilbronn, Mathematika, Vol. 22, No. 1 (1975), pp. 20-28.
- Eric Weisstein's World of Mathematics, Porter's Constant.
Programs
-
Mathematica
RealDigits[(6 Log[2] (48 Log[Glaisher] - Log[2] - 4 Log[Pi] - 2))/Pi^2 - 1/2, 10, 110][[1]] (* Eric W. Weisstein, Aug 22 2013 *) RealDigits[(6 Log[2] (Pi^2 (-2 + 4 EulerGamma + Log[8]) - 24 Zeta'[2]))/Pi^4 - 1/2, 10, 110][[1]] (* Eric W. Weisstein, Aug 22 2013 *)
-
PARI
x=.25^default(realprecision) (6*log(2)*(4-48*(zeta(-1+x)-zeta(-1))/x-log(2)-4*log(Pi)-2))/Pi^2 - 1/2 \\ Charles R Greathouse IV, Aug 22 2013
-
PARI
(6*log(2)*(4-48*zeta'(-1)-log(2)-4*log(Pi)-2))/Pi^2-1/2 \\ Charles R Greathouse IV, Dec 12 2013
-
PARI
6*log(2)/Pi^2*(3*log(2) + 4*Euler - 24/Pi^2*zeta'(2) - 2) - 1/2 \\ Michel Marcus, Aug 27 2014
Formula
Equals 6*(log(2)/Pi^2)*(3*log(2) + 4*Gamma -(24/Pi^2)*Zeta'(2) - 2) - 1/2.
Equals 6*log(2)*(48*log(A074962) - 4*log(Pi) - log(2) - 2)/Pi^2 - 1/2 (see Finch). - Stefano Spezia, Dec 01 2024
Comments