cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089729 Decimal expansion of Levy's constant 12*log(2)/Pi^2.

Original entry on oeis.org

8, 4, 2, 7, 6, 5, 9, 1, 3, 2, 7, 2, 1, 9, 4, 5, 1, 6, 9, 0, 7, 2, 6, 3, 1, 9, 3, 9, 6, 3, 9, 6, 4, 1, 1, 5, 5, 9, 4, 5, 1, 8, 3, 8, 9, 3, 1, 9, 1, 5, 0, 4, 9, 6, 5, 2, 9, 2, 1, 2, 5, 3, 8, 7, 3, 8, 9, 9, 5, 6, 9, 6, 0, 4, 3, 6, 2, 2, 4, 0, 8, 1, 7, 0, 4, 2, 0, 3, 2, 2, 9, 6, 8, 8, 0, 0, 8, 1, 1, 3, 1, 9, 3, 1, 4
Offset: 0

Views

Author

Benoit Cloitre, Jan 19 2004

Keywords

Comments

For x>y in [1..n], the average number of loop steps of the Euclid Algorithm for GCD (over all choices x, y) is asymptotic to k*log(n) where k is this constant. See Crandall & Pomerance. - Michel Marcus, Mar 23 2016

Examples

			0.8427659132721945169072631939639641155945183893191504965...
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Theorem 2.1.3, p. 84.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 156.

Crossrefs

Programs

  • Mathematica
    RealDigits[12 Log[2]/Pi^2, 10, 100][[1]] (* Bruno Berselli, Jun 20 2013 *)
  • PARI
    12*log(2)/Pi^2 \\ Michel Marcus, Mar 23 2016

Extensions

Leading zero removed by R. J. Mathar, Feb 05 2009

A143304 Decimal expansion of Norton's constant.

Original entry on oeis.org

0, 6, 5, 3, 5, 1, 4, 2, 5, 9, 2, 3, 0, 3, 7, 3, 2, 1, 3, 7, 8, 7, 8, 2, 6, 2, 6, 7, 6, 3, 1, 0, 7, 9, 3, 0, 8, 1, 3, 0, 2, 4, 5, 3, 6, 8, 4, 9, 4, 2, 3, 7, 9, 7, 6, 5, 9, 0, 7, 1, 4, 4, 9, 6, 8, 1, 5, 7, 7, 0, 7, 5, 8, 0, 5, 4, 3, 1, 9, 9, 4, 9, 4, 6, 9, 4, 2, 0, 6, 8, 7, 1, 6, 3, 6, 4, 5, 5, 8, 9, 9, 7, 4, 2, 3
Offset: 0

Views

Author

Eric W. Weisstein, Aug 05 2008

Keywords

Comments

The average number of divisions required by the Euclidean algorithm, for a pair of independently and uniformly chosen numbers in the range [1, N] is (12*log(2)/Pi^2) * log(N) + c + O(N^(e-1/6)), for any e>0, where c is this constant (Norton, 1990). - Amiram Eldar, Aug 27 2020

Examples

			0.06535142592303732137...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 157.

Crossrefs

Programs

  • Mathematica
    RealDigits[-((Pi^2 - 6*Log[2]*(24 * Log[Glaisher] + 2*EulerGamma + Log[2] - 2 * Log[Pi] - 3))/Pi^2), 10, 100][[1]] (* Amiram Eldar, Aug 27 2020 *)

Formula

Equals -((Pi^2 - 6*log(2)*(-3 + 2*EulerGamma + log(2) + 24*log(Glaisher) - 2*log(Pi)))/Pi^2).
Equals (12*log(2)/Pi^2) * (zeta'(2)/zeta(2) - 1/2) + A086237 - 1/2. - Amiram Eldar, Aug 27 2020

A378589 Decimal expansion of (1 - 2*A143304)/4.

Original entry on oeis.org

2, 1, 7, 3, 2, 4, 2, 8, 7, 0, 3, 8, 4, 8, 1, 3, 3, 9, 3, 1, 0, 6, 0, 8, 6, 8, 6, 6, 1, 8, 4, 4, 6, 0, 3, 4, 5, 9, 3, 4, 8, 7, 7, 3, 1, 5, 7, 5, 2, 8, 8, 1, 0, 1, 1, 7, 0, 4, 6, 4, 2, 7, 5, 1, 5, 9, 2, 1, 1, 4, 6, 2, 0, 9, 7, 2, 8, 4, 0, 0, 2, 5, 2, 6, 5, 2, 8, 9, 6, 5, 6, 4, 1, 8, 1, 7, 7, 2, 0, 5
Offset: 0

Views

Author

Stefano Spezia, Dec 01 2024

Keywords

Examples

			0.217324287038481339310608686618446034593487731575...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.18, p. 157.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1+2(Pi^2 - 6*Log[2]*(24*Log[Glaisher] + 2*EulerGamma + Log[2] - 2*Log[Pi] - 3))/Pi^2)/4, 10, 100][[1]]

Formula

Equals (1 + 2*(Pi^2 - 6*log(2)*(24*log(A074962) + 2*gamma + log(2) - 2 * log(Pi) - 3))/Pi^2)/4.
Showing 1-3 of 3 results.