cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086242 Decimal expansion of the sum of 1/(p-1)^2 over all primes p.

Original entry on oeis.org

1, 3, 7, 5, 0, 6, 4, 9, 9, 4, 7, 4, 8, 6, 3, 5, 2, 8, 7, 9, 1, 7, 2, 5, 3, 1, 3, 0, 5, 2, 2, 4, 3, 9, 6, 9, 9, 1, 7, 9, 5, 9, 9, 9, 6, 0, 1, 7, 5, 3, 1, 7, 4, 5, 8, 7, 0, 9, 1, 8, 9, 3, 3, 5, 8, 9, 1, 2, 3, 5, 7, 1, 3, 1, 4, 1, 5, 5, 5, 2, 5, 5, 4, 2, 9, 9, 0, 7, 6, 5, 2, 4, 1, 6, 5, 8, 8, 1, 1, 4, 5, 2, 7, 6, 0, 6, 5, 7, 4, 4, 8, 0, 6, 5, 7, 4
Offset: 1

Views

Author

Eric W. Weisstein, Jul 13 2003

Keywords

Examples

			1.37506499474863528791725313052243969917959996017...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Programs

  • Mathematica
    digits = 116; Np = NSum[(n-1)*PrimeZetaP[n], {n, 2, Infinity}, NSumTerms -> 3*digits, WorkingPrecision -> digits+10]; RealDigits[Np, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)
  • PARI
    default(realprecision,256);
    (f(k)=return(sum(n=1,1024,moebius(n)/n*log(zeta(k*n)))));
    sum(k=2,1024,(k-1)*f(k)) /* Robert Gerbicz, Sep 12 2012 */
    
  • PARI
    sumeulerrat(1/(p-1)^2) \\ Amiram Eldar, Mar 19 2021

Formula

Equals Sum_{k>=2} (k-1)*primezeta(k). - Robert Gerbicz, Sep 12 2012
Equals lim_{n -> oo} A119686(n)/A334746(n). - Petros Hadjicostas, May 11 2020
Equals Sum_{k>=2} (J_2(k)-phi(k)) * log(zeta(k)) / k, where J_2 = A007434 and phi = A000010 (Jakimczuk, 2017). - Amiram Eldar, Mar 18 2024

Extensions

More digits copied from Cohen's paper by R. J. Mathar, Dec 05 2008
More terms from Robert Gerbicz, Sep 12 2012