cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A382554 Decimal expansion of Sum_{p prime} 1/(p + 1)^2.

Original entry on oeis.org

2, 4, 4, 4, 7, 7, 3, 0, 4, 1, 5, 6, 5, 9, 3, 3, 0, 6, 9, 5, 1, 9, 4, 8, 3, 7, 1, 3, 4, 7, 3, 5, 0, 9, 6, 7, 6, 3, 7, 3, 7, 3, 6, 5, 2, 1, 7, 8, 7, 6, 1, 7, 9, 8, 9, 5, 3, 6, 9, 6, 1, 5, 0, 4, 8, 3, 8, 1, 8, 1, 4, 5, 0, 6, 4, 2, 5, 4, 2, 4, 6, 3, 2, 5, 4, 8, 1, 0, 2, 5, 2, 6, 3, 8, 9, 5, 5, 4, 4, 4, 4, 3
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.24447730415659330695194837134735096763737...
		

Crossrefs

Programs

Formula

Equals Sum_{k>=2} (-1)^k * (k-1) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A380840 Decimal expansion of Sum_{p prime} 1/(p-1)^3.

Original entry on oeis.org

1, 1, 4, 7, 5, 2, 9, 0, 9, 7, 7, 5, 8, 5, 8, 0, 0, 4, 6, 9, 3, 3, 2, 8, 3, 8, 0, 6, 2, 8, 2, 1, 3, 0, 4, 0, 1, 6, 4, 4, 7, 6, 4, 7, 3, 5, 5, 2, 5, 1, 1, 2, 2, 5, 5, 2, 7, 5, 8, 2, 4, 1, 2, 3, 9, 5, 0, 5, 3, 3, 5, 9, 0, 4, 5, 5, 0, 4, 5, 4, 3, 1, 4, 7, 2, 6, 5, 2, 2, 8, 7, 3, 7, 2, 6, 9, 0, 9, 4, 6, 7, 5, 1, 6, 8, 0
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2025

Keywords

Examples

			1.1475290977585800469332838..,
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/(p-1)^3)

A083342 Decimal expansion of average deviation of the total number of prime factors.

Original entry on oeis.org

1, 0, 3, 4, 6, 5, 3, 8, 8, 1, 8, 9, 7, 4, 3, 7, 9, 1, 1, 6, 1, 9, 7, 9, 4, 2, 9, 8, 4, 6, 4, 6, 3, 8, 2, 5, 4, 6, 7, 0, 3, 0, 7, 9, 8, 4, 3, 4, 4, 3, 8, 5, 2, 5, 4, 5, 0, 3, 0, 7, 0, 2, 8, 1, 2, 8, 1, 6, 3, 3, 5, 3, 9, 3, 8, 6, 6, 0, 1, 6, 0, 7, 5, 4, 7, 9, 4, 1, 3, 9, 0, 2, 5, 7, 5, 6, 7, 4, 6, 9, 3, 8
Offset: 1

Views

Author

Eric W. Weisstein, Sep 25 2003

Keywords

Comments

Or, decimal expansion of constant B2 from the summatory function of the restricted divisor function.
The constant A in the asymptotic formula Sum_{prime p <= n} 1/(p-1) = log(log(n)) + A + O(1/log(n)) (Jakimczuk, 2017). - Amiram Eldar, Mar 18 2024

Examples

			1.03465388189743791161979429846463825467030798434438525450307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 94-98.
  • József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, 2004, p. 155, Chapter V, 1) b).

Crossrefs

Programs

  • Mathematica
    digits = 102; Mp = EulerGamma - NSum[PrimeZetaP[n]/n - PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[Mp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)

Formula

Equals A077761 + A136141. - Jean-François Alcover, Sep 02 2015
Equals gamma + Sum_{p prime} (log(1-1/p) + 1/(p-1)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
From Amiram Eldar, Mar 18 2024: (Start)
Equals gamma + Sum_{k>=2} phi(k) * log(zeta(k)) / k, where phi = A000010.
Equals gamma - Sum_{p prime} 1/(p-1)^2 + Sum_{k>=2} J_2(k) * log(zeta(k)) / k, where J_2 = A007434.
Both formulas are from Jakimczuk (2017). (End)

A324833 Decimal expansion of eta_2, a constant related to the asymptotic density of certain sets of residues.

Original entry on oeis.org

1, 2, 9, 0, 3, 8, 9, 2, 5, 8, 9, 7, 8, 0, 7, 5, 5, 6, 4, 9, 7, 4, 3, 4, 8, 6, 3, 4, 8, 1, 7, 7, 5, 8, 7, 7, 6, 3, 8, 4, 9, 3, 2, 1, 4, 1, 9, 9, 2, 0, 5, 6, 8, 8, 3, 0, 0, 4, 1, 2, 7, 0, 4, 5, 6, 3, 9, 8, 0, 6, 6, 5, 7, 3, 0, 9, 1, 7, 0, 3, 9, 8, 9, 9, 9, 7, 1, 6, 7, 7, 8, 3, 5, 9, 8, 1, 9, 3, 4, 3, 8
Offset: 0

Views

Author

Jean-François Alcover, Mar 17 2019

Keywords

Examples

			0.12903892589780755649743486348177587763849321419920568830041270456398...
		

Crossrefs

Cf. A154945 (eta_1), A324834 (eta_3), A324835 (eta_4), A324836 (eta_5).

Programs

  • Mathematica
    digits = 101; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta2 = Sum[n PrimeZetaP[2n + 2], {n, 1, m}], 10, digits][[1]]; rd[m0]; rd[m = 2m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[eta2, digits] ]; rd[m]

Formula

Sum_{p prime} 1/(p^2-1)^2.
Sum_{n>0} n P(2n+2) where P is the prime zeta P function.
Equals - A136141/4 + A086242/4 - A179119/4 + A382554/4. - Artur Jasinski, Mar 31 2025

A119686 Numerator of Sum_{k=1..n} 1/(prime(k) - 1)^2.

Original entry on oeis.org

1, 5, 21, 193, 4861, 2443, 78401, 707209, 85701889, 4203312961, 841345613, 841819933, 4211020661, 4212763061, 2229320057669, 376856710434461, 317005189060740101, 317069381268836117, 317122432680485717
Offset: 1

Views

Author

Alexander Adamchuk, Jun 08 2006

Keywords

Comments

Lim_{n -> infinity} a(n)/A334746(n) = A086242.

Examples

			The first few fractions are 1, 5/4, 21/16, 193/144, 4861/3600, 2443/1800, 78401/57600, 707209/518400, ... = A119686/A334746.
		

Crossrefs

Cf. A000040, A006093, A086242, A334746 (denominators).

Programs

  • Mathematica
    (* First program *)
    Numerator[Table[Sum[1/(Prime[i]-1)^2,{i,1, n}], {n,1,30}]]
    (* Second program *)
    Numerator[Accumulate[1/(Prime[Range[20]]-1)^2]] (* Harvey P. Dale, Jun 28 2017 *)
  • PARI
    a(n)=numerator(sum(k=1,n,1/(prime(k)-1)^2)) \\ Charles R Greathouse IV, Apr 24 2015

Formula

a(n) = numerator(Sum_{k=1..n} 1/(Prime(k) - 1)^2).

A324834 Decimal expansion of eta_3, a constant related to the asymptotic density of certain sets of residues.

Original entry on oeis.org

0, 3, 9, 0, 7, 2, 4, 0, 5, 7, 3, 5, 5, 7, 4, 7, 9, 1, 8, 8, 7, 6, 5, 9, 5, 0, 3, 3, 2, 0, 4, 2, 2, 9, 7, 6, 3, 8, 6, 6, 8, 4, 8, 3, 8, 2, 4, 4, 7, 7, 3, 3, 6, 0, 3, 5, 6, 7, 5, 4, 0, 6, 6, 0, 3, 2, 6, 9, 1, 7, 5, 8, 3, 7, 6, 1, 9, 2, 4, 9, 2, 0, 2, 9, 8, 1, 7, 9, 1, 0, 0, 6, 9, 0, 7, 6, 8, 0, 0, 5, 6, 2, 3
Offset: 0

Views

Author

Jean-François Alcover, Mar 17 2019

Keywords

Examples

			0.03907240573557479188765950332042297638668483824477336035675406603269...
		

Crossrefs

Cf. A154945 (eta_1), A324833 (eta_2), A324835 (eta_4), A324836 (eta_5).

Programs

  • Mathematica
    digits = 102; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta3 = Sum[n (n+1)/2 PrimeZetaP[2 n + 4], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2 m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[eta3, digits]]; rd[m]

Formula

Sum_{p prime} 1/(p^2-1)^3.
Sum_{n>0} (n(n+1)/2) P(2n+4) where P is the prime zeta P function.
Equals 3*A136141/16 - 3*A086242/16 + A380840/8 + 3*A179119/16 - 3*A382554/16 - A382555/8. - Artur Jasinski, Mar 31 2025

A005722 a(n) = (prime(n) - 1)^2.

Original entry on oeis.org

1, 4, 16, 36, 100, 144, 256, 324, 484, 784, 900, 1296, 1600, 1764, 2116, 2704, 3364, 3600, 4356, 4900, 5184, 6084, 6724, 7744, 9216, 10000, 10404, 11236, 11664, 12544, 15876, 16900, 18496, 19044, 21904, 22500, 24336, 26244, 27556, 29584, 31684, 32400, 36100
Offset: 1

Views

Author

Scorpion(AT)aol.com

Keywords

Crossrefs

Programs

Formula

a(n) = A192134(A095874(A001248(n))) - 1. - Reinhard Zumkeller, Jun 26 2011
a(n) = A006093(n)^2. - Wesley Ivan Hurt, Mar 27 2014
Sum_{n>=1} 1/a(n) = A086242. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065485.
Product_{n>=2} (1 - 1/a(n)) = A005597. (End)

A334746 Denominator of Sum_{k=1..n} 1/(prime(k) - 1)^2.

Original entry on oeis.org

1, 4, 16, 144, 3600, 1800, 57600, 518400, 62726400, 3073593600, 614718720, 614718720, 3073593600, 3073593600, 1625931014400, 274782341433600, 231091949145657600, 231091949145657600, 231091949145657600, 231091949145657600, 77030649715219200
Offset: 1

Views

Author

Petros Hadjicostas, May 11 2020

Keywords

Comments

Lim_{n -> infinity} A119686(n)/a(n) = A086242.

Examples

			The first few fractions are 1, 5/4, 21/16, 193/144, 4861/3600, 2443/1800, 78401/57600, 707209/518400, ... = A119686/A334746.
		

Crossrefs

Cf. A000040, A006093, A086242, A119686 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate @ Table[1/(Prime[k] - 1)^2, {k, 1, 21}] (* Amiram Eldar, May 12 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, 1/(prime(k) - 1)^2)); \\ Michel Marcus, May 12 2020

A363368 Decimal expansion of Sum_{primes p} 1/(p*log(p)*log(log(p))).

Original entry on oeis.org

1, 9, 0, 6, 9, 7, 3, 8, 4, 8, 0, 3, 4, 9, 5, 4, 4, 1, 7, 7, 8, 7, 5, 7, 9, 6, 6, 9, 6, 5, 1, 9, 6, 4, 0, 3, 3, 6, 1, 8, 9, 3, 8, 3, 5, 2, 2, 9, 4, 8, 5, 3, 6, 6, 0, 5, 5, 9, 5, 2, 4, 2, 9, 4, 7, 1, 4, 5, 6, 7, 8, 3, 1, 2, 9, 2, 5, 2, 2, 4, 4, 1, 0, 9, 2, 3, 1, 8, 7, 1, 9, 4, 1, 3, 3, 4, 1, 6, 4, 8, 2, 2, 4, 2, 3
Offset: 1

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Value computed and communicated by Bill Allombert and confirmed by Pascal Sebah.

Examples

			1.9069738480349544...
		

Crossrefs

Programs

  • PARI
    /* author Bill Allombert */
    \p150
    pz(x, ex=0)=
    {
    my(s=bitprecision(x));
    my(B=s/real(polcoef(x, 0))+ex);
    sum(n=1, B, my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
    }
    my(P=primes([2, 61])); intnum(x=1, [oo, log(67)], (pz(x)-vecsum([p^-x|p<-P]))*intnum(s=0, [oo, 1], (x-1)^s/gamma(1+s))) + vecsum([1/p/log(p)/log(log(p))|p<-P])

A053198 Totients of consecutive pure powers of primes.

Original entry on oeis.org

2, 4, 6, 8, 20, 18, 16, 42, 32, 54, 110, 100, 64, 156, 162, 128, 272, 294, 342, 256, 506, 500, 486, 812, 930, 512, 1210, 1332, 1640, 1806, 1024, 1458, 2028, 2162, 2058, 2756, 2500, 3422, 3660, 2048, 4422, 4624, 4970, 5256, 6162, 4374, 6498, 6806, 7832, 4096
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Totients of prime powers are prime powers only for powers of 2.

Examples

			The 10th pure power of prime (but not a prime) is 81, so a(10) = EulerPhi(81) = 54.
		

Crossrefs

Programs

  • Mathematica
    EulerPhi[Select[Range[2^13], CompositeQ[#] && PrimePowerQ[#] &]] (* Amiram Eldar, Dec 21 2020 *)

Formula

a(n) = A000010(A025475(n+1)).
Numbers of the form phi(p^k) = (p-1)*p^(k-1), where p is prime and k > 1.
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p-1)^2 = A086242 = 1.3750649947... - Amiram Eldar, Dec 21 2020
Showing 1-10 of 43 results. Next